Eckart Modrow

omputer Science

with / Snap!
— Snap! by Examples —
Version 2

5 v - O X
M Snap! CSwS2 L-system X+
&« C @ htipsy//snap.berkeley.edu/snap/snap.himl Z 2 « » 0 &
Snap! R & % CSwS2L-eystem A] =" Il [
E"EE Noonro! 3] ' &
Biooks nsing - prite
Wsouna Boperators - M =t
| 20 B variabies. Scripta Costumes Sounds

(z add RSSFENRARIRY to ‘rules
turn * @B degrees

. add to ‘rules
turn § degrees set depth to [

create the drawing instruchtion
set angle to draw
to

length of text instruction
set rules to list

add to rules
add to ‘rules
Set depth to
set angle 1O
set length to

point towards mouse-poil

go tox: B y: @
go to randompaosition
glide @ secs to x: {{

change x by
change y by

L position]
| x position
v position J

set length

set rules to list
add to (rules
set depth to
set angle to
set longth o [

WMaks = block Stage

© Eckart Modrow 2022
emodrow@informatik.uni-goettingen.de

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 International
License. It allows download and redistribution of the complete work with mention of my name, but no
editing or commercial use. In addition to the book, the listings of the described projects are loadable from
the following address:

http://emu-online.de/projectsOfCSwithSnap2.zip

The scripts are developed with Snap! 8.0.0.

Prof. Dr. Modrow, Eckart:
Computer Science with Snap!
Version 2
- Snap! by Examples -
© emu-online Scheden 2022
All rights reserved

If this book is helpful for you and you would like to express your appreciation in form of a donation, you can
do so at the following PayPal account:

emodrow@emu-online.de
Intended use: Snap! book

This publication and its parts are protected by copyright. Any use in others than legally permitted cases requires the prior
written consent of the author.

The software and hardware names used in this book as well as the brand names of the respective companies are generally
subject to the protection of goods, trademarks and patents. The product names used are protected by trademark law for the
respective copyright holders and cannot be freely used.

This book expresses views and opinions of the author. No guarantee is given for the correct executability of the given sample
source texts in this book. | assume no liability or legal responsibility for any damages resulting from the use of the source texts
of this book or other incorrect information.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Preface 3

Preface

This book, similar to its predecessor "Computer Science with Snap!"?, uses a collection of programming
examples to explore the scope of the graphical language Snap!. It does not replace a textbook that conveys
CS content but shows how to use Snap! to apply CS methods. In this second version, some reflections on
computer science education, especially on the concept of objects and the relationship between infor-
mation, data, and visualization, are prefaced. Examples explaining their consequences can be found below.

Snap! in the present version 8.0.0 represents the next step in the development of graphical tools. The
current version was extended among other things by features in the area of object-oriented programming
(OOP), list operations and multiple stages as well as metaprogramming and thus meets all requirements up
to high school graduation and far beyond. Since also drastic improvements were reached with the working
speed and libraries for different ranges, e.g. with the pixel access, in the audio range or with the use of
external resources are available or can be developed easily new, hardly restrictions in the application areas
exist. If it must be, one can still use JavaScript functions for time-critical operations or extensions within
Snap!. The libraries contain numerous examples of this. 2

The selection of problems in the following chapters is relatively conservative, in some cases leaning closely
on existing computer science curricula, but also going beyond these. This is intended. | hope on the one
hand to "pick up" the teaching colleagues from traditional courses, and on the other hand to provide con-
texts that give meaning to the computer science content to be acquired from the learners' point of view.
This way should result in lessons that are very much oriented towards creativity, but also towards the teach-
ing of informatics concepts. The examples describe in detail the handling of Snap! from different aspects.
After a few considerations about didactics in this area, an introductory chapter follows, which explains how
to work with Snap! "on the fly". Then the next chapters illustrate the possibilities of the language. Sections
without direct application reference also follow. This compromise is due to space requirements because
extended concepts actually require extended problems. The examples are not arranged hierarchically, even
the second part contains rather simple ones. At the end of the script there are overviews of the methods
used in the examples as well as an index.

This book is a translation from German. Unfortunately, | do not speak English well, so it will be bumpy. |
apologize for that. Because all programs had to be changed as well, this task could only be done by me. Be
strong and hold it! Many thanks for the wonderful help of the DeepL?2 translation program. | would proba-
bly never have finished without these.

I would like to thank Jens Monig for his support - and for the results of his work. The learners will be thank-
full

| wish you a lot of fun working with Snap!.

Gottingen, 2022/9/15
(ﬂa% / :

LE. Modrow, Informatik mit Snap, https://emu-online.de/ComputerScienceWithSnap.pdf
2 SciSnap!2 is discussed in more detail in https://emu-online.de/ProgrammingWithSciSnap.pdf
3 https://www.deepl.com/translator

Content 4
Content
PrEIACE ettt ettt b s e bkt Re bR st e et et btk nebea sen e ettt et bt ettt etnaas 3
CONEENT <. e ettt st s bt e ere she e e e e st et R e see e e e e Rt e et ere e e e reneenneat 4
1 DidactiCal REMAIKSc.eoiiieieirieieieiet ettt sttt sttt st et s s e s st e e e s eeeae st st e saen b e eeeneanae 7
1.1 Data, Information, Stories, and ViSUGIZAtiONScocevviieiiveeieeieeice e s s 7
1.2 Computer Science and Media EUCAtIONcouviiieeiieiieicieee ettt st sttt se e ss s e reeraes 16
1.3 Objects and Inheritance by Delegationccove et e e e e 18
2 ADOUL SNAP! ettt et st ke a et be s e b e e bt e be ke aea et b s et e e st aes et et se st ene 19
2.1 WAL TS SNAP!? ittt st e b et sttt e st s et sttt st ae e aes st ene s 19
2.2 WAt iS SNAP! NOL? ettt ettt et st b st e s b sttt ebe s b e b sen et ea ees 20
2.3 THE SNAPI-SCIEEN ..ttt st sttt st et s be e et e ekt ehe e e b et st et st e sen s eneesenn 21
2.4 Example for EXperienCed USEIS: FIU ... sttt st se e seaes e e sensenee s 23
WIEING OWN IMELNOAS ...ttt et st st b s b e st e se e stsannne s 23
Elementary Algorithms and Variables ... st 25
(@1 =T 1 LI]] =T OO 26
CommUNICAte With ODJECES .eecveeeeeie ettt sttt s e e e e see s e es e snenesneseesnnne 27
DT VYA 1o 1= < = Yo SR 29
3 Examples for "Data and INformation" ...t s enees 31
3.1 Examples for Communication in @ GIVEN CONLEXEccecevvieriririeniireie sttt s eree s esese e e 31
AL the GIrEENGIOCEIS. ..ot ee ettt sttt et st st e st ses st sae saestseebeenbeseae sessessseesensesaneesenen 31
SWIIMIMETS ittt ettt ettt st st b shesbesaeeae et et et b et e e et et e e eateut et e et eb s et bestes b es s ensen e sen e saeaee e seenee 33
SEIF POILIAIT oottt st et e sttt b ses et e s ses s e s sen b eae st ses s e sesensreeseen 34
[N EHE BISTIO cuviiiiceteeie sttt ettt st s s e st e st ea st sa shes et e b s et ea sessesaeesenseseneerenn 35
SEArIE'S ChINESE ROOM ...oueiiiiiiiiie ettt sttt st st et s s et e s 36
3.2 Examples for Communication with an Open QUESLIONcccceeveeieiveecceee e e 37
Distance Learning AStrOPNYSICScvvireireieierertcreee e s st s e st ea s ess e sre st see e es et asseenesreseesennan 37
Calculation of the Distances of the red and blue Pixels from the Center of the Galaxy 40
WEIZENDAUM S ElIZA ettt ettt sttt et st et e e b aes e 42
3.3 Examples for Communication with a Clear QUESLIONccccuecieeiericere e 44
The KNOWIEAZE SOCIELY ...eovveeeceeciecec ettt sttt ettt et es s resee s et s s e eseseesee e nsesaenereeneens 44
ACCESS T0 DAtADASES ...c.vvivirie ettt sttt st st e sttt bbb ettt eb e 46
ACCESS TO JSON-DAtA ...t e s s 47
3.4 Communication Without HUM@N PartNerscceveerieneeinineneseiee sttt ses e esesesenens 49
LICENSE Plate DELECTION ...cceueieeeeeiiiei sttt ettt ettt st e s s bbb s 49
SEIEAMINE .vviie ettt sttt ettt s e st et e st st e st e e ee s e e e sue e e e s aesaes saeereaensses saeese et bes st seensbansan sueesaenses 52
Zero Knowledge AUTNENTICATIONccccveeeeeie ettt et ettt ere b e aa s e eneae e 54
Y 1 '0] o] LI o= 1 0] o] (=TT 56
.1 A LQWN IVIOWET .ttt ettt e e st ettt bt s es bt ss e s s e et e st s e sh sh s s ebesaesae s sbesbeeneennens 56
L VT d o T X [N = o 11 o U RT 57
4.3 THE SUN SYSTEIM ..ttt et et et te s te st s er s eeesesteste e sestesaesersaneate s saesteseseensare et seenen 58
4.4 CaESAr ENCIYPLION woiviiiie ittt ettt e e et st st sbe s b sbe e e sbesbe st eneesbassess s eebbanbansesnes 59
4.5 A COlON IMIIXET .ttt seete ettt st sttt ettt ettt seb s seb ekt ebe s e ses st s e et e b b et e saebebe sesea sens st senbene senteettns 61

A5 TASKS ettt ettt st b b she bt b e st eae st s et e et e bt e R e b e et e n s beabenseebe et et et s atesbestesnnane 62

Content 5
5 Simulation of @ SPring PENAUIUM ...ttt st aer et e e et se e e e s s eraeseae e e sresbesberenens 63
6 Troubleshooting iN SNAP! ...ttt s te e e e stesre e e etesre e s eet e e s e e s aesaessen s nees s bensensennen 67
7 Lists aNd REIAEA SEIUCLUIES ..ocuoivi ettt sttt st st e e s e e e s se e e s es s e sreetesee s seessenenseneens 69
7.1 Sorting With Lists - DY SEIECLIONoocvevii et st st st st et sn e 69
7.2 Sorting With Lists - QUICKSOITcceuiirieeririeeire ettt sttt et s ea e sttt s et 71
7.3 Shortest paths with the Dijkstra methodcccoiriiin e 72
7.4 MALriCeS aNd OWN LOOPS ..cevreeuiririiirieienetteresiieststete st et sttebe e sesses st ebe saeseseebesenssseaesessesenssteenseseseses 75
7.5 Higher Level List OPerationscccviirieeniriee sttt st ettt ststeb s s b sttt ese s s e stessseae 77
7.6 Recursive LiSt OPeratioNnscc.cciiiierine ettt e e e e et s e b sre st 80
7.7 HYPEIDBIOCKS ..ttt ettt st et et st st st et e bbb e s st besene st ses et ana sen 81
7.8 Fast Image Manipulation with Precompiled BIOCKSccoevivieveinieieeeeeee et st 84
8 T - 11 OO 85
8 Object-0Oriented ProgrammMiNgccccccvevirieiereseeerssreseereeseseessesseseessseresseseesse e s sssessassessssessessesessensessssensans 86
8.1 Fiona and the Filing CabiNetsccco ettt sttt st s e s s e s es 89
8.2 IMIABNELS ettt ettt st st e et ettt e e st e e she e shesaeeae et et e ee et eesben b e s e e e e st nes 93
< T AN I T o o1 = (] oY | U RS 94
8.4 A DIGItal SIMUIALOT «..oiieieietee et st st et st st e et s s ebe sesbesaneese s 98
D GrAPNICS oottt sttt et b et st e bbb e et ekt eb e s Rt ek sk sen et eae st ben et et sensesens 104
9.1 Line Graphics with Koch- and HilDErt CUIVEccuveioivieineeieee sttt s 104
9.2 ThE RGB COlOT CUDE ..ttt st sttt sttt b et s st ea e bes e st senseneneses 107
9.3 Printing and CULtING COSTUMEScueuirieieiireie sttt et s st eb e st ss et saeses et en ees 109
9.4 Drawing on Costumes - with an own JavaScript LIbrarycceeveecnece e 110
0.5 DFIP PAINTING ceeitititietiet ettt s st st s sttt st st bbb e e be e e e st e e sbe st st sbesneaneansans 115
1S BT Yo o { I =] = ot [o RS SRTR 117
1S N I T <O 121
10 1MQABE RECOGNITION ..viiiiceiie ittt e ettt st e sae s te et et e e st et e s e e st s e s ste st sbesbesueaneaeansaeseansansans 122
OIS N = = T oo Yo [Y or-] =Y OO 122
10.2 Project: Transit PrONIDITEA!c.cce ittt sttt er e s et st s s v s e esenssne e 126
10.3 Project: FAC DEEECLION ...viii ettt sttt ettt sttt st s et st e e ea b e sae s be e e e e be s sbesnnaessessreans 132
F0.4 TASKS e.uteveuereue sttt ettt st st et ettt bbb et ses e ses bbbt ehe s ea ses e see et e bbb e aeheae st sen e n e bt eneenens 137
L0 SOUNDS vttt sttt ettt ee e ses et et et et es e ses et et eh s ea s e sea e 4 sesea sea st sea b es et et eae s e sen bt een 138
10,0 FiNA SOUNGS ..ottt sttt st st et b st st b bbbt bbbt ses et s bt b b ene 138
10.2 PrOCESS SOUNDS ...ouvieieieieireetietete et st st se st bttt eae b ebe seaeae ses st st besebe b e b sesea sen st sen bt e satenenbens senens 138
11.3 Make MUSIC With JENS IMONIG .eccveeeeeeeeieeieietee ettt sttt ese e sre st ses e aes s ereereeneseeseenesnnas 140
11.4 Project: HEArNG TEST ittt et st st s sve st et st b b et e e st st saesa sbe e e st sueene 142
R 1 T 3RS 143
A o oY 1Yot = [T o T T [T S T=Y [£SO 144
12.1 The Electron Source and the Experimental SEtUPcoceceeeieiviieecee et 144
12.2 The Capacitor and the EI@CtriC FIEldcooveveee et st ereeeees 145
12.3 The Helmholtz Coils and the Magnetic FIeldc.vo oottt eaeraenens 146

12,4 TRE EIECIIONS oottt ettt ettt st st e s st stesbsebssas b aebsessesbessenseeseessense sseestestesnsensssens 147

Content 6
13 Texts and RElAtEA TOPICS .ocvieiecececececrertet ettt st s st s testestestese e e e s sesessaesaesaes e s sensensenneenessteses 149
13.1 Operations ON SEHNES ...ccciecieeicece e re et e e s e et e e ste et e aeesre et aesneestessaenses stesnsaesnnsesseesnsannnes 149
13.2 VIZENEIE-ENCIYPLION w.ooviiveiiieteieriet ettt sttt et et st e bes ese s sssss et sbensssebessesesseseste st seessnnsaesens 152
13.3 DINA-SEQUENCING ..ecveeeeesieeeirteeitestestesseesteseseesseesss seseessesssesnseassen sressssessesssesnsessssessesssssssnsssessenssenasessans 154
13.4 Text Files, Server, and FrequenCy ANAIYSIS ..o eeriinrireire ettt eer e s s s es e ens 157
13.5 SQOL DAtADASES ...ttt sttt et sttt ettt b s et st bt s bbb et eae et b et et s et et s 161
1316 TASKS ettt sttt ettt sttt st s et e st ebe s et st bt e be e s b ea shbes £t et b ea £t ehesen b eae ettt ebesen b s et e s 167
14 Computer Algebra: FUNCLIONal Programmingccoeeiiriireninetine ettt sestss e s s e sesaes e s s 168
T4.1 FUNCTION TEIMNS .ttt ettt st st s st sttt et bbb e e e s bttt sa s et st e st e e shesaesueeneersensseneas 168
14.2 PArse FUNCLION TEIMS ..ottt ettt st s st st e s et ettt b e et et st se e saesae s s sbesreene 169
14.3 Derive FUNCEION TEIMSoiiieieee et ettt st et e e e st e s e se e s s e e e ne e ens e ene 173
14.4 Calculate Function Values and Draw Graphseecveeceninieieieecenes s seeseestestessesneeessesssssensens 176
L5 TASKS ettt sttt et sttt sttt st b e bbb es e e b ea eae e es et e b ea et ea sea st ettt et e sen b s et e s 179
15 Artificial Plants: L-SYSTEMS ...ucuveiieeecerie s etrtees e st es ettt e e resee e eses s et eresseseesee e sessensessereeseseesennen 180
L5.1 L-SYSTEMS weeiutiiitertiereette ettt ettt st st st shesbe et eeeseass et e e et enseeb e et seeae s see st st sbesbesueeneeeaunaneene et enesertesan 180
15.2 Create the Drawing INSTrUCLION ...c..oceeieceieccecc st et s st e es e e sae et seeenn 181
15.3 The STACK OPEIAtiONS ...c.veiiriieiit ettt ettt ettt s e b e st aes et ebe seses e stesesessenssessesereese sasseens 181
15.4 Drawing the PIANTS c.coecivieriiie ettt sttt st sttt st e st s e e st ses s ebenes s et ass sessesareese sen 182
15,5 TASKS ceeueueetieeeeeeireeeesetetetete e et eeeesteteae st tesese st sesbeseae st ses e e stssessss et sess s eae sesbes et esesensebeneeheneat e esenenbenaeeenen 183
16 AULOMATA oottt st sttt et et ettt e b b s e a e e et e e she et et e st es et r e s e n b et sreereeee 184
16.1 COrreCt Mail AQUIrESSES .ceeveueeireeieriietireeieet ettt sttt ettt s tes st ebeses et eae st sesanestesanseseesensnsereens 184
16.2 Hyphenation: KEVIN SPEAKSccccviiiriireiie sttt sttt st st ee st sttt st aes e s sesbese s sessassenesen 186
16.3 Coupled TUMNG MACKhINESuiiiie ettt e st e s et e s e see e e aen s s e e e seeseesennn 190
16.4 Cellular Automata: Iterated Prisoner's Dilemmacccoeeierieeirenenne et s 195
16.5 TASKS ettt ettt sttt st b et bt e et b e b R b he s e b ea b e e s bt ket a et ebe e st ebe s 201
L7 PrOJECLS uiiuiieiitertest ettt ittt sttt e e e s et sae s st s te st e st sbesbe sueeseeaeeeae et ane e ee e e e et eeb et bes et sae et et she sh sueeueaeeneens 202
17.1 LOGO fOF thE POOKeiiiiiiteieieiet ettt ettt e s et e e st ebe s b st aes b et seesea st ene s 202
17.2 SNapMINder DY JENS IMONIZvevviiecieeeeeetiee ettt ettt e se et st se et es s sasetesbe st e aenbeneransens 208
17.3 Connectivity: The World is SMallcviiie ittt et s aae b aer e sae et e s 214
17,4 EVOIULION ettt ettt sttt ettt st e ettt sh et e es e s e es e ses bt bbb ehe b ebesenea sensreenn 221
17.5 Rate Websites: PAZERANKccucverieeiece ettt ettt s e e r s s e etesbesee e aenbenens 225
17.6 ThE SMAMt SCAIE ...ttt ettt st s ettt s eb e s st b bt ebene 231
17.7 License Plate RECOZNITION ...ucveiiveeeietietee ettt vttt st s e ebesbesae s e s aesenssteebestesaennaneneas 237
HOW B0 1t 2 ettt st et sttt st et et sttt s bt b s heh et e b ses et ea se s eb £t e b e a et e b seebeb e et et s et e st ene 242

1 Didactical Remarks 7

1 Didactical Remarks

1.1 Data, Information, Stories, and Visualizations*

Modeling and implementing as well as reasoning and evaluating belong to the core of the process-related
competencies of school computer science. For teaching, their relationship is crucial: on the one hand, learn-
ers should independently create solutions to problems, for which they acquire technical knowledge and, of
course, also need training in the use of tools; on the other hand, the subject matter should enable discourse
on social and political issues based on the acquired technical competence. The relationship between the
three areas of tool use, technical issues and social impact determines the framework for general education.
Or to put it more sharply:

How much time should be spent on tool training, i.e. learning how to use the programming language and its
development framework, so that there is enough time for the students to solve problems independently and
to reflect on the results?

Without this time, the subject actually has no place in general education schools. In the following, we will
examine in a little more detail the information-oriented didactics of computer science prevalent in German-
speaking countries, the terminology used therein, and the implications for the choice of tool and its use.

The German Society for Computer Science (Gl)
writes on the above competencies:

"The process of modeling is not only learning content,
but also a consistent method of computer science
teaching, although implementation is also indispensa-
ble to make the result of modeling tangible. Reasoning
and evaluation promote the learner's ability to com-
municate and to argue; without this area, dealing with

computer science systems is only intuitive or playful
and often determined by influences from media."

The Gl mentions as contents for the middle school the connection between information and data, different
forms of representation and operations on data and their interpretation in relation to the represented in-
formation. In the upper secondary school®, a distinction is to be made between characters, data and infor-
mation as well as between syntax and semantics and information is to be represented as data with data
types and in data structures. The current curricula largely adopt these specifications.

In addition to the contents, the sample tasks are particularly interesting for teachers, because from them
an idea of the intended teaching can be gained well. In the area considered, there are traditionally treated
topics from the field of data structures and databases, but almost nothing about information. This term
appears mostly only within word combinations (information technology, information society, ...), and it is
used contradictorily. If, for example, information is defined as "the semantics of a statement, description,
instruction, communication, or message"”’, then it is not quite clear to me how these semantics are to be

4 largely from Modrow, E., (2017). Ist der Informationsbegriff fur die Schulinformatik hilfreich?
LOG IN: Vol. 37, No. 1. Berlin: LOG IN Verlag. (S. 38-43).
5> Attempt of a corresponding translation from German by me. The same is true for the following translations.
& may be high school
7 https://kultusministerium.hessen.de/schule/kerncurricula/gymnasiale-oberstufe/informatik

1 Didactical Remarks 8

"processed automatically by machines"8. It seems that teaching cannot be easily derived from a term that
is not sharply enough defined, even if it is used prominently in the competency domains. So, it is worthwhile
to look a little deeper into the meaning of information.

In information-centered computer science didac- i:i\
tics, the concept of information is usually ex-

;='==

Daten
g A
werden verarbeitet Daten

oder transportiert

plained using the diagram on the right®°. If one de-

rives content areas from it, one comes very fast

e.g. to the automatic processing and linking of rep-
resentations, thus to data. Information-centered
didactics just as quickly turns into data-centered
didactics when it comes to concrete teaching.
From the diagram it becomes clear that the con-
cept of information used in computer science di-
dactics has neither to do much with Shannon's in-
formation theory nor with the everyday equiva-
lence of information and data. The level of infor-
mation is hardly linked with computer science con-
tent, so that an implementation in teaching is dif-
ficult or requires breaks in content.

We therefore need precise and mutually compati-

Information

darstellen
umwandeln

Bedeutung

interpretieren
erkennen

knowledge A =~

Pragmatik/Vernetzung;

™ Informationen werden mit

Erfahrungen verkniipft und
ergeben somit Wissen.

ble definitions for the terms used. The knowledge

\\\ Semantik;
)) Aussagen/Daten wird eine

"/ Bedeutung zugewiesen.

mformaﬁoi :

pyramidi® seems to me to be helpful for this, data
. . ors . . Daten
which, in addition to data and information, also —
einzelne Zeichen werden mittels
Syntax zu einer Aussage

angeordnet.

&
contains the levels of knowledge and symbols. As ,:))

symbols Zeichen

a starting point we choose the definition of

knowledge from Wikipedia!

Knowledge is [...] understood as a collection of facts, theories, and rules available to persons or groups, which
are characterized by the greatest possible degree of certainty, so that their validity or truth is assumed.

Knowledge is thus bound to persons and consequently cannot exist within today's machines. There we find
data. Since knowledge cannot be complete and can even be wrong, gaps in certainty arise which can be
closed or reduced by information'?.

Information is the subset of knowledge needed by a particular person or group in a specific situation and is
often not explicitly available.

This definition is similar to that from the Gl Education Standards, "Information is the contextual meaning of
a statement, description, instruction, communication, or message.", but related to the knowledge modified
by the information. Information is also tied to individuals who recognize and evaluate the meaning of the
data. It is time and situation dependent. If a person receives a message twice, for example, the information
content is much smaller the second time, because the knowledge gap was already closed by the first infor-

mation. Information depends on the one hand on the data used for its transmission, but on the other hand

& http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf
% http://www.informatikstandards.de/index.htm

10 https://derwirtschaftsinformatiker.de/2012/09/12/it-management/wissenspyramide-wiki/
11 https://de.wikipedia.org/wiki/Wissen

12 https://de.wikipedia.org/wiki/Information

1 Didactical Remarks 9

it also depends on the state of the receiver. The receiver pragmatically integrates information into his ex-
isting knowledge, links it with it - or not. Up to this point, there are no problems: Information is in the head,
data in the computer. The concept of information has no place on the machine level, to which we now turn.

Data is represented by symbols of the selected character set, which we can understand here as code. The
syntax of this representation describes the structure of this representation.

The above-mentioned concept of information is person related. Information can therefore not be seen
without the interpreting person, e.g. because the same data can represent completely different information
for different persons. Without their context, data lose the property of being information. They are reduced
to what they are without meaning: just data. In the knowledge pyramid model, the relationships are clear:
the receiver interprets the received data and tries to make sense of its semantics. This step occurs before
the linkage with his existing knowledge and largely independent of it. The interpretation depends on the
receiver and its state; it cannot be done solely based on the data. After the interpretation, the receiver
decides whether the meaning of the data represents information for him.

In my opinion, we should refrain from squeezing the concept of data into the information-centered scheme
as was done above. Data is a category in itself, bound to a physical representation. If, for example, an ocean
sonde measures temperatures, stores them, and then is lost, then the physically represented measure-
ments exist as data, even if, unfortunately, they never become information. If an operating system stores
system status in log files, then these data exist, even if they are never evaluated by humans. The definition
of data as representations of information confuses the above concept of information with the colloquial
one and leads to the unattractive situation that the meaning of information seems to be satisfied when
data and their structures are considered. But this is not true.

Our investigation has a simple result: the two lowest levels of the knowledge pyramid are accessible to
computer science. They are linked to the traditional content areas. The two upper ones are at least partially
intrapersonal, going beyond pure computer science. Like the area "computer science and society" they re-
fer to the meaning of computer science systems, this time not so much politically and socially, but related
to personal concern. The concept of information is part of the general educational contribution of school
computer science. This is not achieved if the treatment of data-related topics is equated with information-
related ones.

We want to work out the consequences of our considerations in four situations. For this we name the two actors
of the information transfer scheme shown above as Susi (sender) and Rudi (receiver) and reduce the labeling in
the scheme.

Case 1: Susi sends the message "Have arrived!" to Rudi.

The message can only have meaning for Rudi if Susi

shared context

and he are clear about its sense. Thus, if Rudi knows
that Susi is either on her way to Hanover or to her-
self, then he can interpret the message, even includ-

ing subtexts such as the missing "well" that might
suggest some complications. Susi, on the other hand, .
knows that Rudi is waiting for her message and will

understand it in its brevity. She can express her infor- —>
o
mation through appropriate data. Susi and Rudi act Information technology system Lo

==

within a shared context that allows them to interpret o)
Communicationin a given context

the message. Without this context this is not possi-

1 Didactical Remarks 10

ble, and therefore the context should also be included in the schema. However, it should not remain there,
because of course the classroom consequences are relevant, not the schematic ones. In the classroom, such
a context can be well realized through stories, as we are doing right now. Thus, not only suitable data struc-
tures and protocols result from a problem, but also the visualization of the situations, the connection of
the technical topics to the actors of the story, may it be the inhabitants of a farm, the story of the relation-
ship between Susi and Rudi, or the elements of a simulation. It should also be possible to manipulate the
data occurring in it, in order to be able to observe what is happening without effort and to control the
results. What one sees usually does not need to be explained separately. Both, the visualization of the con-
text and the data, should be easily possible in a development environment suitable for schools.

In this first case, the role of the computer system is completely secondary, clearly separated from the ex-
change of information. Susi could also have called out loud, sent a postcard, drummed the message or had
it transported by carrier pigeon. And vice versa, the ability of the computer system to encode texts appro-
priately, to transport the characters and to represent them again is completely independent of the infor-
mation transport. The task of the system is to mark the characters in such a way that they can be recognized
as text and represented by a suitable subsystem. This task is performed automatically, e.g. by marking the
data packets or the file on the basis of the established syntax. This has nothing to do with understanding.

All'in all, the example suggested by the basic scheme is unproductive from an informatics point of view. In
my opinion, it should only be used if the information aspect is to be particularly emphasized in the lessons.

Case 2: Susi sends the message "mostly in the afternoon" to Rudi.

In this case, the common context, steeled in many

Susi

crises, is not supposed to be present because Susi
and Rudi are more or less random communication

Ty

partners in the network. Since Susi cannot arrange

and transmit appropriate data without this context, /
Rudi must first establish the context. Therefore, the i —>
communication process has to be started by him by A § Information technology system m“{"

asking an appropriate question to Susi. The question Communication with an open question
is interpreted by Susi in such a way that she can iden-

tify the desired information and convert it into data. In turn, Rudi must interpret the received data as an
answer to his question and evaluate it as the information he is looking for. This is represented in the schema
by double arrows. A lot can go wrong on both sides. Susi can misunderstand the question if it is not formu-
lated completely clearly. So, she can receive wrong information from Rudi and generate correspondingly

wrong answers, which can be misunderstood by Rudi again.

Again, the interesting things happen in the minds of the participants. We could discuss the importance of
non-verbal communication and address the role of emoticons, examine text comprehension in different
social or cultural contexts, or the need for video telephony. All of these are important school topics worthy
of discussion. What they have in common, however, is that we do not approach them through knowledge
of either the network protocols or the data structures used. The specialized informatics topics are irrelevant
to the role of information discussed here.

1 Didactical Remarks 11

Case 3: Susi sends the message ,,Berlin, Bern, Bucharest" to Rudi.

In this case, Rudi has asked his question so precisely
that Susi can evaluate it unambiguously. An interpre-
tation and thus a context suitable for understanding
is not necessary. But this also eliminates the role of

Susi as a person. She can be replaced by a computer . f
sl
that answers the question as long as some syntax - -« >
. 4 It
rules are respected. Rudi can ask e.g.: eee” Information technology system W'
SELECT name FROM cities WHERE IStCGpltal =,,y65” Communication with a clear question

AND name like ,B%“ LIMIT 3;

The information is distributed very one-sidedly in this case. Rudi knows what information he needs. He
describes the data required to close the knowledge gap and retrieves it from an information system. Neither
on the way from Rudi to the system nor within the system there is even a hint of information. This arises
only in Rudi's head after he has received Susi's answer.

Since this third case corresponds very directly to communication in and with information systems, its ana-
lysis is important for learners. Whether they use digital assistants, consult databases, or use search engines,
they are expected to have an unambiguous description of the data needed to answer questions - whether
it suits them or not. While the systems may reflect understanding, or it may be attributed to them by the
users, they do not possess it. Awareness of this prevents overestimation of the answers received and un-
derestimation of the user's responsibility for his or her question. The more the role of the communication
partners is blurred, the less clear the evaluation of the results becomes.

Case 4: Rudi transfers his tasks to a program and goes swimming.

After Susi has already been replaced by an algo- Susi l
ual

rithm, in this case by an SQL server, Rudi could also - -

get the idea that his tasks can be performed better AT Information technology system P

=
=

and faster by an algorithm. He claims that he can

describe his interpretation of Susi's data sufficiently Data exchange without human partners

precisely by a program that extracts information

from the data and also immediately initiates any necessary actions. Is this true? We choose high frequency
trading in the banking system as an example. Susi transmits the current prices at her stock exchange, Rudi
evaluates the differences to his stock exchange and initiates corresponding buy or sell instructions.

Since Rudi, now as a machine, has no knowledge, also no knowledge gaps can be closed with him. Therefore,
it cannot be information in the defined sense. The algorithm Rudi has indeed emerged from the knowledge
of the person Rudi about the processes in stock exchange trading, but it does not represent this knowledge
completely, and above all, it does not link it with Rudi's remaining knowledge. The gaps in this knowledge,
which must be closed for concrete reactions in stock exchange trading, require the current stock exchange
values. For this purpose, the algorithm has variables, i.e. blanks, which are updated by Susi. Depending on
these values, Rudi runs through its sequences of instructions in different order and triggers the correspond-
ing actions. No interpretation is required for this. It is a pure automation process.

We can learn a few things from the four cases considered. The first two show that human communication
can be problematic, regardless of the medium used. The latter gets its meaning from the fact that it makes
communication possible and from its distribution. The concept of information is irrelevant to the technical
issues of data processing that arise in the process.

1 Didactical Remarks 12

The other two cases are more interesting. The third describes quite well the roles of the user and the IT
system in information retrieval. The intelligence here lies entirely with the user. The user describes the data
required to generate the information sought and is thus also responsible for this description. If the descrip-
tion is imprecise, then he receives corresponding answers. If, as in case 2, the questioner asks a human
expert, the expert must infer the information sought from the context and, with the help of the IT system,
collect and transmit the data required to answer the question. He or she then also assumes responsibility
for its relevance. In case 3, the demands on the questioner increase considerably, because he must now be
an expert. There are no more excuses. His question is always evaluated, e.g., via statistical correlations or
by searching for matches to the question text verbatim in the network, but it is not understood. In order to
be able to sort the resulting data at all, the system must supplement the missing context, e.g., by evaluating
past questions or similar questions from others. The danger that this creates "echo chambers," for example,
which always generate data with the same tendency, is discussed as a current problem that endangers
democracy.

In this scenario, the information aspect leads to the question of what the user needs to know in order to be
able to ask appropriate questions; to know both about the subject of the question and about how the used
system works. The traditional subjects of school computer science are thus extended by an aspect that is
suitable for evaluating the relevance of these very subjects against the background of life in a society shaped
by computer science systems. Information-centered didactics understood in this way requires the develop-
ment of new teaching components to further develop the subject in the direction of current general edu-
cation. It links the subject content with its social significance. To be able to do this with reasonable effort,
it requires tools that, on the one hand, keep the time required for tool training small, i.e., free up time for
other things, and, on the other hand, give space to the context in the form of stories in addition to an
appropriate consideration of the specialized topics.

The fourth case describes the transfer of human tasks to information technology systems. People can de-
scribe from their knowledge and experience how to react in different situations. Machine learning methods
then transfer descriptions of this knowledge into suitable (data) structures. Within the framework of these
structures, the automated systems react in a manner comparable to humans, usually even faster and more
reliably. But what happens if the description is incomplete or new situations arise? Since the evaluated data
retain their data character throughout the entire process, i.e., they never become information, their se-
mantics are also never made accessible. If they mean something different than actually intended, then no
one understands this change in meaning because it cannot be linked to existing knowledge from perhaps
completely different areas. (By the way: the use of neural networks does not change this assessment). In
these cases, the clear separation of data and information makes it possible, for example, to discuss respon-
sibility for the consequences of automation (for example, in autonomous driving) and to explore the ethical
boundaries (for example, in the selection of training data). The information aspect creates clarity in argu-
mentation and prevents socially relevant issues from being clouded by a retreat to technical content. It
enables political discourse on the position of informatics systems.

Information-centered didactics has led to a somewhat inflationary use of the term information in almost all
areas of school computer science, at least in German-speaking countries. It loses its sharpness and espe-
cially its function to give orientation in the planning of lessons. The traditional content areas, such as data
and data structures, are not harmed by the fact that they now have the additional claim of also taking the
information aspect into account. But it reduces the chance to accentuate teaching of computer science in
the direction of its general educational function. If, on the other hand, we reduce the concept of infor-
mation to its original meaning, then we expand the subject canon of school computer science to include
socially relevant aspects that can have a direct impact on the planning of the curricula.

1 Didactical Remarks 13

As an example, let's look at the concept of the "knowledge society", from which it is sometimes concluded
that knowledge no longer needs to be acquired if it is available to everyone "on the Net". On the basis of
our considerations, we can immediately see that it is not that simple after all. In the net we do not find
knowledge, but data. Instead, there are a number of questions that need to be clarified before information
acquisition in the knowledge society can really work out:

e What basic framework of knowledge do learners need to have in order to be able to identify their
knowledge gaps at all?

e What competencies do the learners need to acquire in order to be able to accurately describe the data
required to close the knowledge gaps? Can they even describe what they don't know?

¢ What knowledge about the informatics systems providing the data do learners need to acquire?

e How do learners learn to assess the relevance of the data provided relative to their question?

e What happens if the answers are "colored", e.g. adjusted to the questioners?

e What data does the answering IT system obtain from the questions? What information can be derived
from it?

The concept of information thus proves to be quite clearly effective in the area of "computer science and
society". We should leave it there. In my opinion, this restriction does not limit its importance. On the con-
trary: if a term can clearly accentuate the orientation of a school subject, that is not little. It is a lot.

If the concept of information is not very productive with respect to data, but helpful with respect to the
area of computer science and society, the meaning of the content area "data" must follow from itself -
otherwise it will be difficult to justify the existence of this area from a general education point of view.
Among the mentioned content areas of this domain, besides the somewhat interspersed concept of infor-
mation, the classical topics of a standard area of computer science can be found: the area of algorithms
and data structures. It seems to me that computer science structures its contents differently than current
computer science didactics for a good reason: obviously there are not too many points of contact between
data and information, but there can be no separation between algorithms and data structures, because the
other area is indispensable for the one. This also becomes clear in the Gl demand for "modeling and imple-
mentation as a continuous method". Even if the scientific structuring of the content areas is not a manda-
tory requirement for didactics, it should be taken into account, because it is certainly not senseless.

The question is somewhat different: Which parts of the basic scientific curriculum are relevant for general
education-oriented didactics at a certain point in time? Or still differently: If "in former times" certain tech-
nical questions were also important for schools, because the technical and professional development had
only reached a certain state at that time, then this does not yet result in a compelling justification for the
relevance of these technical topics at a later time. Linear data structures (stack, queue, ...) may serve as an
example: In universities they are still relevant and there closely related to the algorithms working on them.
In school they had their importance, because without their implementation advanced student work could
hardly be realized. With the tools available today, however, it must be asked whether the implementation
of these structures is still necessary. If lists are available that can be visualized well, then the linear struc-
tures actually only differ in the place of their access, the beginning or end of the list - and this can be seen.
It is intuitively clear what causes which operation.

Now, in the area of schools, it hardly makes sense to consider the processing of data as a purpose in itself.
What is required is again a context from which the need for its transformation arises. Data thus acquire a
meaning; their processing takes place for a specific purpose. Without this context, the acquisition of com-
petencies from the area of "reasoning and evaluating", which is central to the justification of the school
subject computer science, is also hardly realizable. The context is therefore to be taken seriously. It is of
equal importance to the subject. Pseudo-contexts, which only serve to get to the subject content as quickly

1 Didactical Remarks 14

as possible, are rather counterproductive. If the context is obviously meaningless, then this "nonsense" is
easily transferred to the subject, which consequently also appears meaningless to the learners.

Data originates from the context and flows back into the context in a modified form. Physical computing
may serve as a prime example, where sensor values are collected by the computer system and used to
generate actuator control data. ("When it rains, the windows are closed." "When the train comes, the barrier
is better down.") The example also shows that simple numerical values can have their meaning as data.
However, they do not have this meaning "per se” but gain it within the given framework. The example also
shows that the learners do not necessarily have to solve tasks that the teacher has set but can work on
problems that they themselves have derived from the context. They do not work on exercises, but act as
problem solvers, in this case as small constructors who make life easier for other people or prevent catas-
trophes. The transformation of data is not an end in itself, but a means on the way to a goal they have set
themselves.

The context does not necessarily have to be real (as in physical computing) or simulated (through the mul-
timedia properties of visual programming languages). It can also be a story from which the informatics
question arises. Computing a certain percentage according to a given procedure need not motivate every-
one. But if one asks the question about the contribution of e.g. Germany to the damages of a hurricane in
a completely different place®3, then a single number gets an immense meaning, even if we can determine
it only rudimentarily. Even the recognition of a digit in a picture becomes interesting for learners if, for
example, the problem of recognizing car license plates arises from an exciting story or a current case. No
matter how the context is chosen: its importance for the motivation of the learners requires that the de-
velopment environment can take it into account, through graphics, sounds, animations. To ensure that this
representation does not displace the actual subject content, the context representation must be very easy
to manage.

Structured data of the same type usually occur in direct form as strings or images. Therefore, there are
separate data types for them. Linear data sets occur either as sequences of input/output values (data
streams) or as character strings which are transformed for certain purposes (cryptography, ...). Both possi-
bilities show that the embedding in a meaning-giving context follows as if by itself. In the case of images,
the required transformation usually follows directly from the problem definition. Image enhancement, color
changes, edge detection and consequently object detection, classification of images, etc. may serve as ex-
amples. Since the representation of these data sets as list-like structures or tables is intuitively clear, their
algorithmic treatment is usually not a big problem. The situation is somewhat different with the control of
the developed algorithms. Since these structures can contain a lot of data, the ease of visualizing them,
from which the current state of the data set can be seen, is crucial for learners. In schools, therefore, it is
not so much the algorithmic components (which are always present) that matter, but the visualizability of
their effects.

13 Friedericke Otto, World Weather Attribution, https://wwa.climatecentral.org/

1 Didactical Remarks

15

Direct "data processing" no longer plays a major
role in schools because special tools such as data-
base systems have taken over the partial tasks. The
data are therefore largely elements of models in
which they describe the parts of the systems and
represent interrelationships. Together with the de-
mand for a context that seems meaningful to the
learners, it follows that the subject area "data"
should be predominantly embedded in a subject
area "modeling".

1 Didactical Remarks 16

1.2 Computer Science and Media Education

In schools and universities, the teaching of media competence is being hotly debated as part of the " digi-
talization offensive". Since the term " digitalization" obviously concerns computer science, the latter should
take part in the discussion. Teaching institutions need to think carefully about what exactly their contribu-
tion to overall education is. On the one hand, children and young people gain knowledge and experience
also - and in many areas predominantly - outside these institutions; on the other hand, the goals of "edu-
cation" and "training" should be sharply distinguished. Young people do not need to master the use of
current professional tools; they can safely leave that to adults. But they must be prepared to take over their
role with future tools.

It is and has often been argued that learners need to learn how to use modern media in order to lose their
"fear of them". | think this is absurd. Firstly, children and young people are normally not afraid of media,
they are curious about them. Secondly, they learn how to use them quickly and easily from others and
through use. The fear is more on the part of the older ones, who have not grown up with this technology
and therefore feel insecure about it. Those who are currently older should remember that in their youth,
those who were older at the time discussed how they could be gently introduced to mouse-controlled in-
terfaces in order to take away their fear of them. We can learn from this that handling current technology,
such as smartphones, is learned along the way, but that this obviously does not automatically lead to using
future technology in the same uncomplicated way.

Conclusion: Learners must be enabled to understand the fundamentals of future technologies and to acquire
the skills to use them. For this, they need general knowledge of the technical fundamentals of information
technologies, but not specialized knowledge of the current technology.

It goes without saying that media use is not the same as media consumption. The passive use of media of
whatever kind, e.g., simply "gawking," cannot be the goal of the educational system. When we deal with
media, they must occur in a context that activates learners.

Conclusion: The learners must be enabled to select and use tools, e.g. for the creation of media, depending
on the problem. To do this, they must learn to solve problems independently.

Education for independent problem-solving is usually not seen as a central task, at least in schools. Creative
subjects such as art, music and sometimes languages at least sometimes strive for this. Mostly, however,
the focus is on good learning. Computer science now provides tools that can be used to realize, test, and
improve one's own ideas even in a relatively rudimentary form. It would be a missed opportunity if the
subject did not realize creative teaching for the learners. However, this will only work if the teachers them-
selves have experience in independent, creative problem solving and if they trust the learners to do so. If
the teachers have only " well learned" the informatic contents, then it will not work out with the creativity
in the lessons. If independent problem solving is to be aimed at in schools, then this should and must also
have consequences for teacher training at universities.

Conclusion: Teachers must be enabled to plan and implement creative lessons. Opportunity and space must
be given for this in their own training.

Modern media such as social networks have changed social life, communication, etc., in some cases pro-
foundly. The consequences can hardly be foreseen while this process is still ongoing. Much less were they
foreseeable before it was started. | would therefore consider it a complete overload for teachers to demand
that they deal with the actual social consequences of IT systems, which include the effects of digital media,
in the classroom. That would also not be effective, because looking at the consequences that have already
occurred is necessarily backward-looking. What can be demanded, however, is to show that the use of

1 Didactical Remarks 17

information systems has social consequences and that these depend very much on how the systems are
designed. Different problem solutions therefore have different consequences - and vice versa: If certain
consequences are undesirable, then it will usually be possible to find another technical problem solution.

Conclusion: The learners must experience that there are almost always different solutions to a given problem.
They should think about their effects, which are of course not conclusive. They learn that these effects are
not given but can be shaped.

What does this have to do with Snap!

Graphical programming environments like Snap! not only contain the algorithmic components but are em-
bedded in a media environment that not only allows, but requires the use of graphics, sound, If a prob-
lem is being worked on, then cameras and graphics programs can and should be used to create the appro-
priate costumes and allow costume changes that visualize the current state of the system. Sound programs
allow to comment on the process itself, to edit and insert music or to design it by oneself. And, of course,
the results must be presented, because product pride is an important motive for dedicated work and inter-
est in the results of others is great. Snap! supports just the presentation aspect by the new possibility to
switch between several stages.

Snap! allows algorithmic problem solving on a high level, but it does not only allow the analytical approach,
but also the playful, the experimental, the creative, ... What it does not allow is passivity, because nothing
happens by itself. Media are essential system components, e.g. for visualizing the results - and they can also
be the results themselves. Snap! therefore offers the chance to construct model solutions to current prob-
lems, e.g. also and especially in the media field. Through the self-created algorithmic framework of the
model, understanding for the observed processes in the real model emerges. The experience of being able
to gain this knowledge oneself enables the active, critical examination of future technology. The examples
in this book are intended to show that this is possible in many areas with the aid of elementary methods.

They are intended to encourage people to get started themselves. @

1 Didactical Remarks 18

1.3 Objects and Inheritance by Delegation

If somewhat more extensive problems are processed, then the number of subproblems to be solved also
grows. Often, these can be combined into groups that can be assigned to concrete objects. An important
aspect of this way of working is that teamwork based on division of work can be realized well in this way,
in which the different teams create objects that solve subtasks. The object-oriented way of working is often
realized by creating classes that describe the behavior of a group of similar objects. Instances (exemplars)
of these classes are then created to solve the problems. The approach is largely top-down and requires
some abstraction. More suitable for beginners is the prototype-based approach used in Snap!, in which an
example, the prototype, is created for each group of objects, which is developed and tested step by step. If
one is satisfied with the result, then further objects of this kind are derived by duplication (cloning) of the
prototype.

To object-oriented programming the concept of the inheritance belongs centrally, which can be realized by
classes or by delegation. In the original article of Lieberman'4, which describes the prototype-oriented pro-
cedure with the delegation already very early, objects are understood as embodiment of the concepts of
their class. Thus, the elephant Clyde stands there for

everything, the viewer understands by an elephant. If he f'm Clyde ' Fred
imagines an elephant, then it is not the abstract class of
elephants that appears in his mind's eye, but Clyde. If he
speaks about another elephant, here: Fred, then he de-
scribes him like this: "Fred is just like Clyde, except that

he is white.”

What does this approach mean for the learning process? If the learner knows only one copy of a class (here:
Clyde), then the prototype describes his knowledge completely, an abstraction is senseless for him. If he
then gets to know other copies and describes them by modifying the original, i.e. replaces some methods
by others, changes attributes and adds new ones, then the image of the class itself slowly emerges as an
intersection of the common properties. Only now the abstraction process is comprehensible to him and,
after a few attempts, viable itself. Delegation is thus a method that maps the learning process itself by
creating prototypes instead of classes. In Snap! we work predominantly according to this principle, which
is presented in detail below.

In Snap! prototypes are created as sprites and equipped with the desired attributes and methods. Once
their behavior has been sufficiently tested, clones can be created dynamically using the clone block. For
each sprite it can be displayed from which sprite it was derived (parent) and which children it has (chil-
dren...). The parent property can also be set and/or changed afterwards, so that the system of dependen-
cies is dynamic. If the program stops, then all dynamically created clones are deleted, which is beneficial

A clone initially inherits (almost) all local attributes and methods of the parent object. This is indicated by a
"paler" representation in the palettes. If a sprite overwrites inherited attributes or methods, then these
replace those of the prototype as usual. If you delete the overrides again, the inherited attributes or meth-

ods appear in the palettes.

14 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,
1986, http://web.media.mit.edu/~lieber/Lieberary/OOP/Delegation/Delegation.html
15 1f you absolutely want it, then you can also implement a class system.

2 About Snap! 19

2 About Snap!

2.1 Whatis Snap!?

Snap! ¢ was (and is) developed by Brian Harvey and Jens Ménig for the Beauty and Joy of Computing pro-
ject!” and is freely available on the Internet. Since the system runs in the browser, it does not require any
installation and works on almost all devices®8. Its interface and behavior are similar to Scratch??, another
free programming environment for children developed at MIT. However, the implemented concepts go far
beyond that: here the roots lie with Scheme, a dialect of the LISP language, which has long been used at
MIT?% as a teaching language in the education of computer science students. It is introduced, for example,
in a famous textbook by Harold Abelson and Gerald and Julie Sussman?t. Snap! is thus a fully developed
programming language, which consequently can be used in (almost) all problem areas. For most of them it
is now also sufficiently fast. This is not self-evident and was a shortcoming of its predecessors. Graphical
languages are largely concerned with controlling the state of the system and thus allowing, for example,
infinite loops to be interrupted or access errors to data structures to be "tolerated". This leaves little time
for the actual program execution.

Snap! is a graphical programming language: Programs (scripts) are not entered as text, but are composed
of tiles. Since these tiles can be put together only if this makes sense, "wrongly written" programs are largely
prevented. Snap! is therefore largely syntax-free. Nevertheless, it is not completely free of syntax, e.g.
because some blocks can process different combinations of inputs: if you put them together incorrectly,
errors can occur. However, this is more likely to happen with advanced concepts. If you use them, you
should know what you are doing.

Snap! is exceptionally "peaceful": errors do not cause program crashes but are indicated by the appearance
of a red mark around the tiles that caused the error - without dramatic consequences. The used tiles, which
include the newly developed blocks, are always "alive". They can be executed by mouse clicks, so their
effect can be directly observed. This makes it easy to experiment with the scripts. They can be tested, mod-
ified, disassembled into parts and reassembled in the same or different ways. This gives us a second ap-
proach to programming: in addition to problem analysis and the associated top-down approach, there is
the experimental bottom-up construction of subroutines that are assembled to form an overall solution.

Snap! is descriptive: both the program sequences and the assignments of the variables can be displayed
and tracked on the screen if required. This makes it ideal for simulations, for example.

Snap! is extensible: by the implemented LISP concepts new control structures can be created, which work
e.g. on special data structures.

Snhap! is object-oriented, even in different ways: Objects can be created both by creating prototypes with
subsequent delegation and in different ways via classes.

16 https://snap.berkeley.edu/snap/snap.html

17 https://bjc.berkeley.edu/

18 Meant, of course, computers, tablets, smartphones, ...

19 http://scratch.mit.edu/

20 Massachusetts Institute of Technology, Boston

21 Abelson, Sussman: Struktur und Interpretation von Computerprogrammen, Springer 2001

2 About Snap! 20

Snap! is first-class: all structures used are first-class, i.e. can be assigned to variables or

Snap!
used as parameters in blocks, can be the result of a function block or the content of a data P
structure. Furthermore, they can be unnamed (anonymous), which is important for the
implemented aspects of the lambda calculus, the basis of LISP. Consequently, the logo of
Snap! contains the same proud lambda that used to be found in the hair of Alonzo, the
mascot of BYOB. Alonzo

2.2 What s Snap! not?

Snap! is not a production system. It is a learning environment that was developed, among other things, on
behalf of the U.S. Department of Education as part of CE21 (Computing Education for the 21st Century) and
is also intended to reduce the dropout rate in technical subjects. It is a tool for implementing and testing
informatics concepts in an exemplary manner.

Snap! is primarily used for work in the field of algorithms and data structures, but essential areas of com-
puter science such as access to files or hardware can also be embedded in the browser environment, some-
times via libraries. The microphone and the camera of the computer are directly addressed, and the built-
in url block allows quite simple accesses to the Internet and thus, for example, via intermediate servers, the
use of databases or external hardware

Since the code of Snap! is freely available, there are different modifications. Whether this is a blessing or
a curse remains to be seen. In any case, there are now specialized versions e.g. for the areas of physical
computing, robot control or work in the network, so that corresponding simple examples of the first ver-
sion of this script have been deleted.

2 About Snap! 21

2.3 The Snap! - Screen

(im] Snap! ImS2 zero knowledge pro. X | = (=] X
< (&) 5) https/snap.berkeley.edu/sna t . S Keine Synch .
[Y & 3% ImS2 zero knowledge protokoll
Motion € Control 9] :’ﬁ
Looks Sensing | - j =

J/ draggable

{ sound (operators
Pen Pl crirrie Scripts ~ Costumes ~ Sounds

LCDIEIED “

u @

B (@ nachricht

"o,

- set ;

= G set « o pick random €D to @D
R set x [to/ (v XAr 1) mod n
[sst (0@ , ——— = '

(change | by €B

show variable |

list il

numbers from P to ¢

N in front of

item @K of B

all but first of B ‘ broadcast 1.;,1.. D mod £ . »r
length | of B e

index of [in & Py enae - v S

The Snap! screen consists of six areas below the menu bar?2,

e On the far left are the command tabs, which are divided into the categories Motion, Looks, Sound, and
so on. If you click on the corresponding button, the tiles of this section are displayed below the button.
If they do not all fit on the screen, then you can scroll the screen area in the usual way. If you want, you
can display the tiles of all sections one below the other.

e Totheright of this, i.e. in the center of the screen, the name of the object currently being edited - called
a sprite in Snap! - and some of its properties are displayed at the top. You can - and should - change the
default name of the sprite here.

e Below this is an area where, depending on the tab, the sprite's scripts, costumes and sounds can be
edited or created.

e Atthe top right is the output window in which the sprites move: the stage. This can be resized using the
buttons above it, the entry in the settings menu (Stage size ...), a corresponding command block or by
simply "dragging" with the mouse. If you set the checkmark in front of the variable name in the Variables
palette, the variables will be displayed on the stage, if necessary, with a slider that allows you to easily
change the values. Since variables can contain anything (numbers, texts, lists, sprites, programs, ...), the
state of these variables can be visualized at any time.

e At the bottom right, the available sprites are displayed. If you click on one, the center area changes to
its scripts, costumes or sounds - depending on the selection. To the left of the sprites, an icon of the
stage, or, if available, the icons of several stages are shown. You can also switch between them by click-
ing on them. Each stage has its own project, which is independent of those of the other stages. However,
it is possible to exchange data between the projects.

22 The layout of the areas can be changed using “

2

About Snap! 22

The menu bar itself offers the usual menus for loading and saving the project and individual sprites on
the left. Furthermore, several settings can be made. One possibility is to set the language. | still recom-
mend staying with the English version, because this way you can distinguish your own blocks, e.g. named
in German, from the native ones at first sight.

On the far right we find the green flag known from Scratch, with which several scripts m
can be started simultaneously when using the corresponding block. The pause button =
next to it pauses everything and the red button ends all running scripts. Individual scripts or tiles can be
started by simply clicking on them.

2 About Snap! 23

2.4 Example for Experienced Users: Flu

Level: high school Materials: Flu

The example simulates the spread of a flu epidemic under different conditions. It serves as a quick overview
of the main possibilities of Snap! and is intended especially for experienced programmers. Beginners
should rather read the next chapters first.

The question is what proportion and
which particular groups of people in a
population should be vaccinated if the
spread of an influenza epidemic is to
be stopped. The question is not so
easy to answer, because the result de-
pends on various parameters: the
probability of infection indicates how
likely it is that a healthy person will be

infected when in contact with a sick
person, the seroconversion time is the time between infection and immunization, the numbers of healthy
and sick persons at the beginning of the simulation determines the number of contacts between them, and
the type and number of multipliers indicates how many persons in the population have particularly many
contacts or contact with particularly widely separated groups. If one of them becomes infected, for exam-
ple, the disease is quickly carried to distant areas. Since contacts, infections, etc. are random, we will only
obtain viable results if we run the simulation several times with the same parameter values in each case -
and then it still remains to discuss which values represent "results" in the sense mentioned at all. The topic
is therefore perfectly suited for a small classroom project. A "steering group" develops the superordinate
scripts, which we want to assign to the Stage here. It coordinates the distribution of tasks with the other
groups. The other groups develop auxiliary methods as well as the prototypes Person and Graph, each
with its own stage, which are almost independent of each other, and think about the data exchange.

Writing own Methods

Itis often necessary to get rid of the created clones of a prototype
without terminating the program. We achieve that here by a new

Motion { control

local method delete all clones of <a prototype> of the stage. Looks (sensing
{ Sound § Operators

This is a command block, that is, a command that (here) has a Pen [v:ab.es

parameter. (Function blocks are called reporters in Snap!) New — LD

{ IMolnlblddks

blocks are written in the block editor, which is invoked with the
Make a block button we find in the palettes or by right-clicking

on the script layer and there in the context menu. First, we spec- Com mand B Reporter 3K Predicate J
ify the method name, with spaces and special characters if de- _ forallsprites = for this sprite only

sired, select the type (Command, Reporter or Predicate) and 0K) cancel

specify whether it is a global (for all sprites) or local (for this o

sprite only) method. We can also choose the palette in which the
block will be included and the color it will be given.

2 About Snap! 24

In this case, we first create a new palette (category)
using the file menu (New category...), name it My
own blocks and select an optimistic green as the
color, which clearly distinguishes the own blocks +defef:f3+ﬁff+cf¢Tﬁf+ﬁf+‘

from the default ones. After pressing the Return —
key, the block editor opens and the block name ap-
pears - with + signs in the spaces and margins.
There, by mouse clicks, we can open another menu

that allows to insert parameters (or more
texts/symbols) in these places and specify their oK | Apply) Cancel |
type if needed. In our case we click on the far right,) /
enter the parameter identifier prototype and click
on the small right arrow for typing. Then a selection
box opens. 23 We select Object (the arrow) as the

type, return to the block editor and drag the re-

quired commands into its script area. O 2 o © - ® I -
[)} z Number @ ii Any typa ecz Boolean (T/F)
Our method uses two script variables (clones and ECF ¢~ » FEAEICE » FES= © T@} v

thisClone) which are known only in this block. It O;H“u‘? ol ... e Iag ..
asks the parameter prototype, which is later passed

@ single input.

with a reference to the "parent person", for its chil-

@ Muitiple inputs {value is list of inputs)

dren - these are then a” dynamica”y Created "per- @ Upvar - make internal variable visible to caller

sons" that occur. 2 As long as there are any of them

. . . . Ok) Delete | Cancel |
left, it remembers the first one in one of the script J

variables, deletes it from the list and then asks this

person to delete itself with tell <thisClone> to | il ary e+ Gai] s)+ ’

i

<delete this clone>.%
The method is called by passing an object (here:

script variables - - O
erson) to it. -

person) set. cones |to(ask. prototype lfar my concs ||
delete all clones of object Person J [lengih | of Gl I o]

set thisClone | to ' item @D o (clones

rc\lelete €E of (clones

tell M to (ﬁ?f;fr—, this clone J’)J

o 4
=>

repeat until

2 This box and the details of the current Snap! version are described in great detail in the Snap! reference man-
ual, which can be obtained by clicking on the Snap! icon at the top-left of the window.

2 The clones created statically via the context menu in the sprite area are not found there.

% The delete block can only be found in the sprite palette. But you can reach it in the stage by using the search
function at the top of the palette area.

2 About Snap!

25

Elementary Algorithms and Variables

To set the parameters and other control values, we use the Stage, which
we click on in the Sprite area. This stage reacts to the message "Green flag
clicked" by setting the initial parameters and determining which variables
are to be measured during the simulations. After that, corresponding sim-
ulation runs are started.

In detail: We can "fish" a reference to the Person prototype using the ob-
ject block from the Sensing palette. If needed, we can store it, like any
other value in Snap!, in a variable, which can be either global (for all
sprites) or local (for this sprite only). Variables are created in the Variables
palette using the Make a variable button. At the same time, we can create
all other required variables, whereby those that are only required within
the stage are marked as local. You can recognize them by the "marker" in
front of their name. The others are global. Global variables are displayed at
the top of the Variables palette, followed by the current local ones. Then
the output area is cleared, some variables get appropriate initial values and
a list called simulation data, which should hold the simulation results, is
cleared (set <simulation data> to <list>). This part could well have been
put in a separate block, but since we want
to experiment with the variable values, it
is better to have them "on the table". 26t mtection probabity | to [
set seroconversiontime | to

set totalnumberof persons | to K]
vaccinated (the number of immune nor- i e o,

mals) is gradually increased from zero to [MIIECTIITERLTES (070
sef numberofsimulations | to

e =
sel simulationdaia | to ' list

In the following, the number of initially

100. The control structures for this can be
found in the Control palette. For each
value, a series of simulation runs is per- =~ pE———_ [T

formed and the average of the results set mean numberotnectons | to [
(here: the maximum number of in- | Pert CHEEEELIEID
fected) is determined. The variable num-
ber of simulations determines how often
this is done. After each run, the results are

set finished? | to < @ false,

Variable name

|finished?]

s, forall sprites _ for this sprite only

OK ' Cancel |

Make a variable
Delete a variable

(finished?

max number of infections
(seroconversion time

] 'Q mean number of infections

] 6 number of immune normals
(@ number of infections

(@ number of multipliers

ﬁ number of simulations

‘9 simulation data

(9 total number of persons

repeat until - number of immune normals > [

LS e i e) number of infections
—_—————

entered as a percentage in the simulation P ——— i,,fedimq

data list. Finally, it is asked to generate a

sel _mean number of infections | to

graph from this data. Another Working " mean number of infections / (number of simulations
group can take care of this. ﬂ';jf_r

I"rmlnd

to (simulation data

[_l;ange numberof immune normals | by &I

wait 1 secs

{number of immune normals / / total number of persons | .- P

] round [‘ mean number of infections / (total number of persons).« &P

2 About Snap!

26

Create Objects

In the control program a method simulate is used.
In it, some initial values are reset and the corre-
sponding number of individuals is generated, differ-
ing in type (normal, multiplier) and status (healthy,
infected, immune). To increase the speed, this is
done in a warp block. Then the simulation run is
started by sending the message "come on!" which
is "heard" by all objects in the system.

How to create objects?

In the create a person of type <type> and status
<status> method written for this purpose, we first
declare a local script variable to which we assign a
reference to a newly created clone of the specified
prototype. After that, the clone exists, is visible, and
is accessible under the name person - very simple.
However, the clones should differ in type and sta-
tus. For this they contain (in this case) a local
method inherited from the prototype setup sta-
tus: <status> type: <type>. We have to call this
with the parameter values passed. We therefore
tell the object person that it should execute this
method. Since this is local for persons, we take the
<attribute> of <object> block from the Sensing
palette, select the prototype (in this case: Person)
in the right field and then the desired method (in
this case: setup ...) in the left field. Because there
are two parameters to be specified, we expand the
block with the small arrow keys and specify the sta-
tus and type behind with inputs. The block is to be
understood as "person, please execute in your con-
text of methods and variables the passed method
with the given parameters". The block is equivalent
to the well-known dot notation of OOP languages:
e.g.person.setup (status, type) ;

{QE simulate

repeat " number of infections

—~
]9 create a person of type: [TE] and status:
_ =

repeat “number of multipliers
o
]9 create a person of type: W[and status: [EEIGY

—~
|° create a person of type: and status:

L

[total number of persons —

number of multiplicrs 10 number of immune normats 1

number of infections ||

Ia_aeate a person of type: W and status:

reset timer

ﬁ?nadcmt come onl

[9 create - a person of type: [type - and status: | status

—

script variables ' person

-

set person | to (@ new clone of Person

fell person |to |9 setup status: [l type: Bl | | of Person

with inpuis status | type

X position
y position
direction
costume #
costume name
size

width
height

left

right

top
bottom
volume
balance
status
neighbors
start time

type
range

Q setup status: [l type: I

2 About Snap! 27

Communicate with Objects

We now come to the actual actors of our flu project: the persons. These are symbolized by
small circles whose color expresses their status. "Normal" persons scurry around in their envi-
ronment in a relatively small scale, meeting the neighbors they can infect or who can infect
them. After a certain time, the seroconversion period, they become immune and are no longer
infectious, nor do they become infected. Vaccinated people are immune from the beginning.
Some of the people are "multipliers", that is, they jump around quite wildly and can spread the
infection quickly. They are similar to the normals but color-coded slightly differently. We make
appropriate costumes in the graphics editor or a drawing program and import them into the
Costumes area.

After creating the persons, they all receive the message "come on!"
to which they react because they have a hat block from the Con- i it |
trol palette that reacts to "come on!". After

that, they get into a loop that terminates
when the global variable finished? gets the
value true. This is the case when there are

no more infected, so when the list of clones

that are still infected is empty.
In this loop the following actions are executed repeatedly:

1. Objects near the person are searched and stored in the neighbors list.

2. All remaining neighbors are infected if necessary or infect the person if they areill.

3. It is checked whether the person must be immunized after the seroconversion time has expired. The
corresponding variable values are changed.

4. After that, the person moves according to their type.

5. After the loop is finished, the clone deletes itself.

Since these processes involve exchanging data between persons and initiating method calls from the other
persons, the example shows some procedures for doing so:

-y

The tell <object> to <run this script> block is used to ask a person to get in-
) . . P P . & :r-.H-T:G C’b]
fected. If you call a function (which returns a result) of another object, you use .
the ask <object> for <reporter> block. Attributes and local methods of other =% ~ |for @ | ,)
objects are obtained via the my <attribute> block from the Sensing palette,
which you have already met. Here we query the state of an object by executing (e 11 ox: A1]
the <attribute> of <object> block in the context of the other object. The blocks
. S T my neighbors
are surrounded by a gray ring (ringified) indicating that the unevaluated code of

the block is passed and not its actual result.

In two places below, local methods - shown in green - are executed in the context of the object. This hap-
pens "normally" when the block is reached.

2 About Snap! 28

Persons respond on the message ,,come on!“:

when I receive come on!
script variables ' i
if | (status =

set startiime |fto timer

r;.peat until finished?

set neighbors | to ' my neighbors

set | |to 1]
=

repeat until* ‘1 > length | of { neighbors

r EEE =)

fell item i of (neighbors fo |_9 infect

status | of | item (i of (neighbors =

_.) infect

and

— (start time = seroconversion time

set status | to LS

= input names: /

my clones
empty?
set finished? | o ¢ The method show yourself selects

the appropriate costume.

| @ show yourself

change x by | pick random i range) to' range

——

9 show yourself

change y by | pick random Ui range | to ' range

if on edge, bounce

if < (type =
¥ (status =

switch to costume healthy'normal

delete this clone

The method infect infects the current object if necessary and en- ,
ters freshly infected into the corresponding list. After that, the ap- I Asiatus);=

pearance of the Object is changed. switch to costume infected'normal

switch to costume immune-normal

4 status |— and
ifl -
4 pick random) to [P |2 infection probability

set sias | fo
: status =

|
@ show yourself
= switch to costume infected-multiplier

set starttime | to' timer —
: : else

1§ change maxnumber of infections | by n | switch to costume immune'multiplier

2 About Snap! 29

Draw a diagram

Finally, we want to have our results represented in a diagram. We
measured the initial number of vaccinated (in %) and the maxi-

Wdraw coordinate - system

mum number of infected (in %). For this purpose, we create a sec- =il is Flie s Coh

ond stage called Graph with New scene from the File menu?®. On [R et e ey
this stage there is a new, second project, which has nothing to do %et size to @& %
with the first one. Its objects, variables and methods are unknown point in direction €I
in the second scene. However, we can use the export/import func-
tions to send objects and/or scripts from one project to the other [ES S ———

- i.e. via files. In addition, we can switch between scenes, sending FEELE« y: -

data from one project to another. We want to go this "internal” draw axes Y
go to x: EILD v: €D
go to x: D y: €D

set i | to[] B

way.

switch to scene Graph |and send' simulation data

In the second scene, we create an object called Pen, scaling y-axis
which we give a nice pen as a costume. First, we let the Ren up —
. o to x: 5D v: (€D + (i
pen draw a coordinate system on the screen and label 9 ¥
pen down
it. We find the blocks for this in the Pen palette. I S —
P go to x: &= y: (&P + (i
The determined data are availa- “ggge simulation data . pen up) _
ble in list as variable simulation 11 A 2 gotox: CGED y: (€D + i
data. They are sent to the Graph 1 0 97 write (i / @ size €D
e
scene after completion of the 2 ? :: | change i | by €D
simulations. The Pen object re- 4 10 a4
trieves this data from the mes- 5 13 82
sage variable and stores it as B 7 &1 _pen up
data. 7 20 75 go to x: m +(i
8 23 74 —
pen down
9 27 70 r : -
message /
set data | to - e g0 to x: (@LD + i
11 33 50 \ Penup iy
L A_) go to x: (S + (i Vo 65

.

write (i / @D size €D

.
' change i | by €D

\; =

go to x: €D v: €D

write [ITETIIEA size (12)
go to x: v: €D
write [TElrh] size

26 only to show this possibility already here

2 About Snap! 30

After that, the data points are transferred to the

—_—
when I receive any message |(message
.

R) message |
y

script variables i

diagram. We send the pen to the first data point
given by a list with the two entries mentioned.
After that we guide it lowered to the remaining it o oy

points - with some conversion. i’ length | of (data >[I

The result can be admired on the output area:

Infected in % .pen down
100 set i |to

%0
80
70
6e
50
40 +
e T
22 T
10 +
2 t } t t {

18 20 38 4c 58

Vaccinated in %

D +

N
change i

In each case, 300 "persons" without multipliers and with only one initially infected person were used (red:
infected, yellow: immune, green: healthy). As can be seen, if half of the population is to remain healthy in
this model, then 30% must be vaccinated.

e ©
o .Oi @® ® (o) (0]
:..o . .go..~’ .o o;.. 5
°0 % oo e
%% . ¢ o o °
..v: .. ©) @ ® “ .~
° » .‘. é o0 © : ®
1 T o.’..o$~..’. S
O T
® ® '.. > oo’:r
%o Qe ° e .. 8
e oo °, o P
o Seo 8° o © .:9%’ 0p ©8yo ©
o®o . ‘.0 ®
s © o - ®o0
0@ ° ® o0 °

3 Examples for "Data and Information" 31

3 Examples for "Data and Information"

3.1 Examples for Communication in a Given Context

As described in the didactic considerations, we need scenarios in which the computer system only acts as a
vehicle for messages that are "understood" by the participants. In the simplest case it only represents the
context, e.g. in the programming of a story. However, the information system is not irrelevant, because on
the one hand its use is learned and thus later, more "informatic" tasks are prepared. On the other hand,
the use of different objects communicating via messages provides an intuitive introduction to object-ori-
ented modeling. The following examples are therefore particularly suitable for the beginning of a program-
ming course.

At the Greengrocers
Level: from middle school Materials: At the greengrocers

Two people act in a store?’, e.g. by a customer en-
tering the room (with leg movements through cos-
tume changes) and then sending a message ("I'm

here!"). Thereupon the saleswoman appears, asks | “e"‘;o‘ﬁ':?;e";’w'd

for the wishes, ... - all controlled by messages. The
context in this case is clear and largely given by the
background image, and since the objects react only
to certain messages, it is also clear what to do in
each case. Even if the situation is trivial, there is no
doubt about the distribution of roles: Messages in
the information system consist of texts which are

interpreted by the agents and, if necessary, trigger
actions.

Scripts of the customer: [o
whe h Hicked when I receive What do you want?

{111 Y On -I-have-forgotten-my-money! R 1 Bl

\
switch to costume Cusiomerd |

switch to costume Customeri
go to x: y:

switch to costume Customer2 [
| e | switch to costume Customers |

wait 02 secs
— wait (02 secs

move §[P steps
s
[mitch to costume Customer6é |

move &P steps

j —
[switch to costume Customer3
wait "2 sech

move steps

wait 02 secs

move [P steps

switch to costume Customeri

say-for.se(s

27 Costumes partly from Scratch and/or own photos.

3 Examples for "Data and Information" 32

Vendor scripts:

when h clicked
go 1o x: y:

switch to costume Salespersoni |

show

pt

glide P secs to x: EFELP v:
™

=Vl Hello, swhat-would-yourlike? STUl 2 JETte]

switch to costume Salesperson5 |

The given animation program, which the learners should be involved in creating, provides a simple frame-
work for the initial lessons, which is modified and supplemented by the learners. Not to be underestimated
is the work with the costumes, e.g. to visualize movements. Working with the built-in graphics editor and
other graphics programs, which in turn provide different graphics formats, which is important, for example,
for the transparency of the background, motivates some of the learners more than the direct entry via
scripts. If different costumes are created, then they should of course also be used - and for this, one needs
program scripts. The detour via the graphics leads to the algorithms - however, based on self-created (par-
tial) products, which can greatly increase the motivation.

Why is the graphic representation so important for the learners? The context is not only revealed by the
texts, but also by the appearance, posture, etc. of the actors and their environment (see: "In the Bistro"
below). What is portrayed here does not have to be said anymore, but it is decisive for the interpretation.
There is a difference whether the exclamation "That's cabbage!" occurs in a greengrocer's store or in a
classroom.

The example leads to different stories that emerge after establishing a defined initial state ("green flag
pressed") in the interplay of messages sent and events triggered by them (with their treatment) following
the given examples. The quality of the results is then expressed in the imagination, complexity and wittiness
of the stories.

Although messages, events, possibly states, which can be described by local variables as "additional attrib-
utes to the already existing ones" are used, the focus of what happens should not be on technical language.
Of course, it is necessary to talk about the processes, and then one may as well use the usual terms. But
this is only a (quite desirable) side effect. The goal of teaching is to activate the learners and to encourage
imaginative action. The use of a formalized way of speaking (" The attribute x-value of the object customer
is reset by calling the method change x by -5.") is rather not part of this. It is sufficient to state that the
customer moves to the left.

3 Examples for "Data and Information" 33

Swimmers
Level: from middle school Materials: Swimmer

We draw a swimmer in different swimming
phases and duplicate it several times. On a mes-
sage ("Go!") the swimmers swim with randomly
chosen initially variable speeds to the other end
of the swimming lane. When one reaches the
edge, he is happy and stops all other swimmers
(and himself) by sending a message.

The trainer's mini scripts are trivial ...

when clicked
set size to P %
go to x: y:

=V Tosstart:»click-on-thespool! BT 2 FEETS

when clicked when I receive Won!

set size to P % stop other scripts in sprite |

switch to costume Swimmer3

go to x: GED v: GIID

when I receive Won! |

LU0 ¥ I°can't*believerit!

when I receive Go!
;epeat until . touching ?
... and also, the swimmers have not much more to switch to costume Swimmert
do than swim. glide (pick random EXP to GEP secs to x: EED y:
y position + (m
:switch to costume Swimmer2

glide (pick random to secs to x: EED y:
VALLELCLE - pick random 71 to (10

switch to costume Swimmer3

glide (pick random XP to EP secs to x: EED y:
LB - pick random /1 to (10

b?oadcast Won!

This example, whose background image defines the context without further explanation, also serves only
to make clear the differences between the message and the information conveyed. However, it can easily
be extended, e.g. by assigning fixed speeds to the swimmers (which requires a new attribute, i.e. local var-
iable) or by having them turn around at the end of the lane to swim back to the starting point. Other swim-
ming styles can be easily represented, success statistics can be kept, and the stop at the finish can be greatly
improved. However, the connection between the victory message and the coach's statement "/ don't be-
lieve it!" remains the secret of those involved.

3 Examples for "Data and Information"

Self Portrait

Level: from middle school Materials: Self-portrait

The students introduce themselves: where they live,
their way to school, their hobbies, ...

In this case, the distribution of roles is even clearer: the
computer system provides images and texts, i.e. data.
The person portrayed was responsible for selecting
them, and this selection is supposed to make Paula ap-
pear sympathetic to the recipients of the data. Does
that work?

Paula knows nothing about the recipients of her data. If they like
dogs, the sympathy will work out: Almost everyone thinks pup-
pies are cute. But if they have a cat that is chased by the neigh-
bor's dog, they will find that Paula's dogs will have to be treated
with caution in a few months. In that case, Paula should rather
use pictures of equally cute kittens. So, it would be in Paula's in-
terest to know as much as possible about the recipients and to
adapt her self-presentation to these interests if she wants to ap-
pear sympathetic to everyone.

If Paula were a politician, a company, or any other institution, she
would have a massive interest in gaining data from her "readers".
Even trivial data like dog/cat preferences can be deduced from
the purchase of pet food - not always correctly, but mostly. For
normal citizens they are probably uninteresting, for the politician
however not, because he must decide whether he hugs on his
press photos more children, dogs, or cats. If he can send the right
picture to every interested party, then the resulting wave of sym-
pathy will be able to deliver some other political content as well.

We can learn from this example that even a trivial project like a
self-portrait provides starting points for the discussion of socially
relevant issues, in this case: for the motivation to collect personal
data.

Script of Paula:

clicked

go to x: P y: €D

switch to costume cassy'dance-a

when

show

=V Hello,sI'mePaula! N{efa 3 BETT
=)'H Illikestordance!

repeat &P

T —1

‘ switch to costume cassy-dance'b

wait /0.3 secs

switch to costume cassy'dance'c

wait /0.3 secs

switch to costume cassydance'd

wait /0.3 secs

switch to costume cassydance'a

wait /0.3 secs
-~ =
switch to costume cassy-danced
wait {XP secs
-+)" And-that-are*my-dogs*Oscarsand-Claudia.

broadcast Please show yourself!

Scripts oft the dogs:

| when | clicked

go to x: y: &
hide
switch to costume dog puppysit

set size to &P %

‘when I receive Please show yourself!

3 Examples for "Data and Information"

35

In the Bistro
Level: high school Materials: In the bistro

The example is directly equivalent to the vegetable
store, perhaps for slightly older students. Using
Snap! opens up some possibilities, for example, in
animating the sprites. For example, one could move
the limbs in a controlled way on the common object
("attached parts"). Most importantly, using Snap!
even for simple animations eliminates the need to
change tools when working on more complex prob-
lems later. And the role of body language becomes
more than clear. If the conversation shifts to the
realm of irony, for example, then many utterances
will only be properly interpretable against the pic-
torial background. And of course: the story is just
getting started. What happens next? One does not
know!

3 Examples for "Data and Information"

36

Searle's Chinese Room
Level: high school Materials: Chinese room

Searle’s example serves to discuss possible artificial
intelligence. There is a person in a room who does
not know Chinese but has a book that contains rules
in their language for modifying Chinese texts. The
person is given Chinese texts, applies the rules, and
passes the results back to the outside world. 22 Peo-
ple outside the room believe that the person inside
knows Chinese.

The example is topical in view of the discussion about
artificial intelligence. But it is of course also an excel-
lent example of the relationship between infor-
mation and data. The "data-processing system" in-
side understands nothing at all but produces results
that are interpreted by users as manifestations of in-
telligence.

Note: Since | unfortunately do not know Chinese, the
texts in the example shown were translated by a pro-
gram. The results were then copied into the input fields.

28 https://de.wikipedia.org/wiki/Chinesisches_Zimmer

11
| | rules

3 Examples for "Data and Information" 37

3.2 Examples for Communication with an Open Question

In this scenario, two human partners who do not know each other communicate with the help of an IT
system. One asks a question, the other helps him with an answer - hopefully to the best of his knowledge
and belief.

Distance Learning Astrophysics

Level: high school Materials: Distance learning

We take advantage of Snap!'s ability to work with
multiple stages and thus manage two projects that
can communicate with each other. A student asks a
question to the distant astrophysicist, who provides

him with material?®, which he hopes the student
Hello, | have heard

will be able to infer the answer. In this case, the ma- that in galaxies the
. . . old stars are
terial is some galaxy images. By the question a con- inside.

text is produced, for which the answerer compiles
and transmits data, from which he believes that the
information searched for opens itself to the ques-
tioner from it. The questioner then interprets the
data material as assistance related to his question -
and not as decorative material for the classroom.

The partners communicate via the block to change
the scene and can transmit texts and/or other data
to each other - in analogy to the block broadcast

-

‘ Question « | 4 >‘|

In the case of somewhat more complicated ques-
tions, the data must of course first be compiled,
evaluated, presented, and interpreted before de-
ciding whether the original question can be an-
swered with it (see next example). This can also be
used for communication with the teacher.

The scripts within the projects of the participants
are simple. To be understood is the compilation of
image data for transmission on the part of the as-
tronomer and the inverse generation of images on

the part of the student, the communication be-
tween the scenes. Central is thus the data exchange
between remote partners.

29 From https://en.wikipedia.org/wiki/Galaxy

3 Examples for "Data and Information"

38

The student asks his initial question. Then he
causes the scene to switch to the astrono-

mer's scene.

If he receives an answer, he first looks to see
if it is a list (i.e. data). If this is the case, then
he assembles the galaxy images from the
data and displays them on the projector in
an endless loop. Of course, he has to know
how the data are structured.

If he does not receive a list from the astron-
omer, he displays the astronomer's answer
for 3 seconds and switches back to the as-
tronomer. Thereby he counts through the
dialog steps (stepl, step2, ...).

clicked
to m

tell Projoctor to | hide

say HelIo,'l'have'heard*that‘in'alaxies*the'old'stars‘are'inside.
say [Binerne for @ secs

switch to scene Astronomer

when

set n

and send

when I receive any message message

if is message a list ?

set data to item of message
K

set galaxies to list
K

for= iR X length of (data

set galaxydata to item (i of ‘data
s

new costume item of (galaxy data width
add to
item @ of (galaxy data’ height item of galaxy data

galaxies

tell Projector ' t0| switch to costume item ‘n of (galaxies

3

wait secs
.
by €D

length

change n
s
if n > of (data

to

set n

think join message for @€ secs
h
by €D

change n
b
switch to scene Astronomer and send join §&d n

3 Examples for "Data and Information"

39

The astronomer wants the student to find the
answer to his question himself. He shows this
step by step by some remarks he transmits to
the student's scene.

Then he generates transferable data from the
galaxy images, i.e. lists of width, height and
pixels of the image, which he combines to the
list data. Then he sends the whole package to
the student.

when I receive any message message
wait @D secs

— Question|

if message

switch to scene CSwS2 Distance leaming » and send Yourcan-find-outforyourselfl v 4 »

if message =
switch to scene CSwS2 Distance learming v]

and send Iwil'now'show*you'some*galaxy‘images. v 4 »

if message =

switch to scene CSwS2 Distance leaming v

and send Takesaslookeat-wheresthesbluesstarssareslocated. v 4 » }

if message =

set galaxies to ask Galaxies - for my costumes

v
set data to list

for= iR -} longth of (galaxies ‘

set galaxydata to list
3

add width of costume item ‘i of ‘galaxies

height of costume item (i of 'galaxies

pixels of costume item (i @ of 'galaxies

galaxy data to data

s =
switch to scene CSwS2 Distance leaming v
and send ([11 data o

to galaxy data
to galaxy data

to galaxy data

The proceeding of the astronomer is to be understood only if he takes from the questions of the pupil that

he should be guided as a newcomer to own realizations. Otherwise, he could simply answer with "yes". So,

he doesn't suspect a colleague, journalist researching for an article, wallpaper designer looking for pictures,

... on the other side of the line. This can be true - or not. If it is not true, then the misinterpreted context

can lead to some trouble. Examples of this can easily be found.

3 Examples for "Data and Information"

40

Calculation of the Distances of the red and blue Pixels from the Center of the Galaxy

Level: high school Materials: Distance learning Il

We want to continue our astronomy example and en-
able the student to measure the average distances of
the red or blue pixels from the center of the galaxy.
For this, of course, we need a tool that on the one
hand can read and rewrite RGB values at all, and that
then evaluates the processed image data. This is a
typical task for the expert, our astronomer. He writes
two functions, which select and amplify the "predom-
inantly" red or blue pixels from a galaxy image and
then calculate the average distances of the red or
blue pixels to the center of the image, i.e. approxi-
mately to the center of the galaxy. He sends these
functions "by mail", i.e. via file export and import to
the student.3°

One can disagree on what one means by "predomi-
nantly" red or blue. The version of our astronomer for
maximize red and blue is:

If the red value (item 1) of a pixel is both greater than
the green value (item 2) and the blue value (item 3)
(including a factor), then return a pixel in full red, cor-
respondingly a blue pixel, and otherwise white.

One of the higher functions of Snap! (map ... over
...) is used in precompiled form. The result is thus de-
termined very quickly.

The function calculate red and blue mean dis-
tances ... first determines some initial values as well
as the image dimensions and the pixels of the image.
Then it calculates the distances to the center for all
pixels of the image. It returns as result a list with the
two mean values.

The astronomer transmits these two functions to the
student "by mail".

maximize red and blue in ' costume >>
script variables ' ¢

to (Kl

set ¢

report
f map

&item m of 7pixe|]
it e

c x item @& of {pixel Ip\ and

report list 255 item /4 v of {11
input names: | pixel

over pixels | of costume | costume

calculate red and blue mean distances to galaxy center in
costume >>

gcript variables
redValue ' nRed

v ki

blueValue nBlue (x0 (yo (width height

pixels pixel

toﬂ
to 0
to [
to [

to width

set redValue
set nRed

set blueValue
set nBlue

set width of costume | costume

set x0 |to! round .;width V7 4 '*3

set height | to' height | of costume [costume

set y0 |to' round {{ height

set pixels | to pixels | of costume { costume

to
to
to

repeat until © ' i

set x
set y
set i

> length | of (pixels

set pixel |to item (i of (pixels

change nRed

change redValue

change nBiue | by €I

change blueValue | by

sqrt | of [{{x

to
by €9

set x

change y

report list | redValue /' nRed blueValue / nBlue

30 Because Snap! currently cannot exchange scripts directly between scenes.

3 Examples for "Data and Information"

41

After receiving the mail, our student asks the pro-
jector to apply the two operations to all galaxy im-
ages and to display the results. This is what he does.

mean distance blue (L1

So far, the informatics part.

when I receive Projector go!

script variables |

show

set costumes | to | ask Galaxies |for my costumes

=i o 1]

switch to costume | item (i of (costumes

go to x: €D v: €D

switch to costume (maximize red and blue in my costume

go to x: €D v: EID

wait 1 secs

set means | to
[calculate red and blue mean distances to galaxy center in. my costume

~ —_—
[set meandistancered | to| round item @ of (means

[set mean distance blue | to | round ' item @B of (means

wait /2 secs

change | | by €

& (i > length | of (costumes

J

If we remember that the astronomer sent the pictures with the small additional tip as an answer to the

question about the old stars, then this question was not answered so far. The student has indeed found

out, first by eye, then confirmed by a small program, that there are more red than blue shining stars inside
the galaxies - but he didn't want to know that. He can now react to the situation in (at least) two ways:
either he thinks the astronomer is an incompetent teacher who does not take him and his questions seri-

ously, and leaves the distance learning program in a huff, or he trusts the astronomer and concludes that

the old stars are the red ones. But this additional conclusion has only partly to do with the transmitted data,

facts about it are completely missing. It results essentially from the context and the situation of the involved

persons.

3 Examples for "Data and Information" 42

Weizenbaum's Eliza®!

Level: high school Materials: Eliza Me: Molor, how are

we today?
The famous example describes the communication

between psychiatrist and patient, where (in this
case) both randomly spout platitudes. The coordi-
nation of the "conversation" happens again by cor-
responding messages.

when
wait secs
set size to %

when I receive tion1
2V A Mr.sMeior,*how are*wertoday? N {115 secs Suedon

H 0,
set size to % set size to 4
-t say for @ secs

H 0,
broadcast Question1 to Pationt Cebils b Yo

broadcast I'm doing okay. | to Psychiatrist
when I receive any message message

wait P secs
set size to %

when I receive Question

say |V ask the doctor message for @ secs script variables answer

1 0
set size to % gt el]

wait) secs set answer to ask the patient

say ‘answer for @) secs

set size to P %

wait secs

broadcast Question to Patient

broadcast answer to Psychiatrist

Besides the playful character of the example, the information content of the messages is also interesting.
Patient and doctor do not react to each other at all in terms of content, but they send data at the right time.
So, what is the transmitted information? If anything, the patient learns that someone is there to talk to.
Maybe that helps him. But this information is not represented by the transmitted data, but by the presence
of data (garbage). The data itself is irrelevant. Or, to put it another way: any data can be transmitted, be-
cause it are not they that carry the information, but the context that gives them all the same meaning.

31 https://de.wikipedia.org/wiki/ELIZA

3 Examples for "Data and Information"

43

Reporter to determine random responses of psychiatrist and patient:

Q ask the doctor ! question

script variables ' n

set n | to/ pick random P to P
if"'n ={

report {11 ||Whatdid-you'mean-with*" | [T=E1 0T

~

if-'n =H

report (L[question
if-‘n =

report |Is-that-a-problem-f0|=you?

if n = ﬂ

report |What-would-yourmother-say-to-that? J

if - =

report IConlinue!
if- 'n =03

report |Does-thls-happen-uﬂen?
ifc'n =
report |I-see.
if- 'n =§
report |How-do-you-deal-with-it?

if- 'n =8

report |And-howdnes-it-make~ycu-feel?

question

¥ ask the patient

script variables ' n

set n | to(pick random &P to &P

report [That's-what-I'said!

3 Examples for "Data and Information" 44

3.2 Examples for Communication with a Clear Question

In this scenario, a human partner communicates with an IT system. If he wants to have appropriate an-
swers, then he must formulate his questions accordingly.

The Knowledge Society G ersisn-Googisire x|+ R
<« C @ htips//www.google.com/search?q=Der +Siden&riz=1C1CHBF deDE715.. 18 Y @ =/ O &
Level: high school Google versuen x ¢ a .
. R o"o° Mmoo m aeserm vk .
Materials: Results of the research 3?
°_‘ Lander-Menschen-Abenteuer | Reise-Reportage : Der Sliden ...
. "
We often hear that it is no longer necessary to ST Funa
acquire knowledge because it is "on the net" ? Alleanzeigen |
. J
and can be accessed at any time. g e e o e < i
Abendschau - Der Suden: |hr regionales Infomagazin | BR ... A
IS that r|ght? Abendschau - Der Siiden ist Ihr werktagliches Regionalmagazin aus der Abendschau-Redakiion "
mit spannenden Reportagen, aktuellen Informationen]
As always, we take an experimental approach hitps: Ak ardmediathel de > sendung » abendschau-der. :
. L. Abendschau - Der Siiden - Videos der Sendung - ARD ... I
and try tO flnd OUt abOUt a nOn-trIVIal COI’]CGptZ Videos zu Abendschau - Der Suiden | Abendschau - Der Suden ist Ihr werktagliches
Regionalmagazin aus der Abendschau-Redaktion mit spannenden Reportagen.
the South. The answer is the "most relevant" of
htips:/iwww wagenbach.de » 395-Der_Sueden.htmlhtml ¥
the 47,400,000 I‘eSU|tS. The uSuaI W|k|ped|a en- Der Sliden - Wagenbach Verlag]
‘Vom Suden in der antiken Welt zur Capri-Sonne der 1950er Jahre, von der Entdeckung der
tr[es are Suppl]ed’ e.g‘ on the book by Borges SuuseemsewamumszurheuugenSe:nsucmnamsﬂanu. ?
("El Sur"), on television programs, films and the | nwpsimwaten, - toven ancersio -
. . . Der Stden der Toskana - Von San Gimignano zur Maremma
cardinal direction, as well as references to Die Keinen und grofien Geschichten aus dem S(icen der Toskana hiben eies gemeinsam: Sie
alle sind voller sympathischer italienischer Momente:
travel literature - and to other books on the
. ' . https:/iw amazon.it» Suden-Geschichte-einer-Himmel.. ¥
SUbJeCt' We don t flnd mUCh more on the fOl' Der Stiden - Geschichte einer Himmelsrichtung Copertina rigida
. . Scopri Der Suden - Geschichte einer Himmelsrichtung di Dieter Richter. spedizione gratuita per i
lowing pages either. So, we have to conclude | cimieimee peromana pare ca 20e speanioa
that "the south" is to be understood geograph- o

ically alone - or we have to bite the bitter apple and read real books. There seem to be a few of them
according to Google's opinion. If we reject this evil suggestion, then we are left with the geographical South.
References to the South as a metaphor, social or economic phenomenon, narrative element, place of long-
ing, literary category, theme of visual art, etc. are missing, and we won't even miss them unless we knew
they existed.

We can find facts "on the Net": the population of Hamburg or the gross national product of Burkina Faso,
the recipe for Frutti di Mare or for repairing the vacuum cleaner. Information can be gained from these
facts if we evaluate and classify them appropriately. But what do we "classify"? Only existing knowledge
comes into question for this, knowledge that exists in the mind, and that must first be acquired before "the
network" can be used appropriately.

If we ask for the results of such ordering processes, i.e. the evaluated data, then we naturally also receive
answers: the opinions of others. But we can only evaluate these opinions, i.e. we can only classify them
ourselves, if we have the corresponding abilities (see above). If these are missing, then other evaluation
criteria remain: that we believe the opinion leaders (or not), that they are sympathetic to us (or not), that
they are like us (or not), that others believe them (or not) ... - if we believe that the others are who they
claim to be (or not). This has little to do with rationality.

32 The screenshots shown are from Google Chrome from 2022/5/1.

3 Examples for "Data and Information" 45

If we know that there are other ways of answer- ~ Sefensuchen. de

alle diese Worter enthalten Der Siiden Metapher

ing our questions than those first supplied by the

genau dieses Wort oder diese
Wortgruppe enthalten

search engine, then we are off the hook. If we ex-

eines dieser Worter enthalten:

pand our search for "the South" to include the ‘tene i e o geogape

enthalten

Zahlen enthalten im Bereich

term "metaphor", we get a completely different b
spectrum of answers - and there are only 200,000

Ergebnisse eingrenzen.

results. What impoverishment! Even "the South

Sprache: alle Sprachen -

as a space of desire" yields 609 answers that have

nitps:/Awww.fachporial-paedagogik.de » Literatur ~
almost nothing in common with the previous sueden als Metapher: Zu Nietzsches Italien-Bild. - Fachportal ...

Publikation finden zu:Kultur; Didaktische Grundlageninformation; Literatur; Stilmittel;
Interpretation; Italien

ones. Only the combination with the fine arts

yields again some hundred thousand hits. If we
hitps:/Mliteraturkritik.de » -

SpECIfy our query by using advanced setting op- Raum als Metapher - Anmerkungen zum ,topographical turn ...

tions or already knOW hOW to exclude terms for 06.02.2008 — Ohne die metapherische Verwendung raumlicher Sachverhalte zu
7

disqualifizieren, ... und Wildnis mit Enigegensetzungen von Norden und Suden, ...
example, then the search results slowly come

. hitps://hist ion.info » les-nation-_. ¥
closer to what we expected from them. Again, ex- "7 SRR A
Regionales Nation-Building - Historegio

IStI ng knOWIedge prOVid es access to new wird die Metapher gezielt als wirtschaftliches Argument gegen einen Anschluss des

historischen sidlichen Tirols an das Konigreich ltalien angefihrt

knowledge.
https://slub.qucosa.de » api» attachment» ATT-0 ¥ POF
Search engines are not spiteful, they just work "as per metaphorische Stiden im argentinischen Tango als ...

von J Krige

intended". If we ask precise questions, they usu- |

r — Die argentinische Hauptstadt Buenos Aires war ein Schmelztiegel fur

S e

ally provide precise answers. If we do not ask precise questions, then they need additional criteria to find
"the best" answers. These criteria can be paid rankings, but most often they are "ratings" of the answers by
other users who have asked the same or similar search queries, or other stored data. The rating is known
to take place in the form of a click on the answer line.

This behavior has consequences. No one can sift through the 47,400,000 answers mentioned at the begin-
ning, and even the 609 hits of the longing space are almost unmanageable. So almost all clicks will be on
the first one or two pages of the search results - and thus we have a self-reinforcing process: the most
clicked pages will again be the most clicked, further consolidating their ranking. The others are present, but
practically invisible. "On the net", users will permanently see only pages whose content corresponds to
those that were initially offered to them. New ones will hardly be added. If, for example, the initial search
queries have been filtered by the provider, supplying him with the results of "similar" users who can be
easily found based on his previous use of the system (or, increasingly, "the net" as a whole), then the user
will hardly leave this "information space" again. He simply does not see anything else. On the part of the
provider, this behavior is understandable, because he wants to deliver search results that are highly likely
to be clicked on - only then he will get paid. But the resulting "echo chambers" are politically explosive, for
example, because they divide society into disjunctive groups that are hardly capable of discourse, but also
impoverish the spectrum of "information" that would otherwise be provided.

The result of our considerations is quite clear: "The net" does not contain knowledge, but data. These can
enrich our knowledge if we have the knowledge to use them appropriately, to evaluate them, to classify
them or to discard them. Appropriate education forms the basis for wonderful new possibilities. If it is
missing, we become manipulable objects.

3 Examples for "Data and Information" 46

Access to Databases

Level: from middle school
Tool: SciSnap3?
Materials: SQL example

We use one of the libraries of
Snap! (SciSnap!), which among
other things offers the possibility
to access databases. This allows us

to compose the usual database

queries from the associated rela-
tions, attributes, etc. using blocks and have them executed. The result in each case is a list. In the example
shown, we get the participants of basic computer science courses. Quite simple.

Why is it so easy - and for whom? The user must know the SQL syntax and stick to it. Above all, he must
describe the desired data completely unambiguously, there must be no possibility of interpretation. This is
not so easy. However, the evaluation of such queries is then easy for the machines, they have been able to
do that for years.

Our user describes with his request the data he wants to receive from the system. He usually does not know
exactly which data he will receive, but he knows their meaning. He knows them, not the machine. The
machine cannot know them at all because it cannot know which meaning the user gives to these data,
which information he will take from them. The list of our students, for example, can mean many things:
maybe they have to be excused from the rest of the day's classes because of a field trip, maybe they check
which small courses can be cancelled, maybe they check if the books are enough for the course. One does
not know ...

SQL queries are easy for machines to evaluate because they provide a clear basis for decision-making: Data
either belongs to the requested category - or not. It gets interesting when questions are asked that do not
provide a clear basis for decision-making. Should such fuzzy questions as "Are boys (or girls) disadvantaged
at school?", "Do urban children (rural children, children from middle-class homes, members of sports clubs,
kindergarten children, children with a migration background, ...) have it easier (harder) at school?" "Is the
evaluation of different competencies at school fair?", "Who is the best teacher?" are answered with the help
of (e.g.) SQL queries, then a reformulation and thus an interpretation must inevitably take place, which
leads to answers for which it is at least questionable whether they answer the original question or just the
interpretation. There is always an answer when a query has been formulated, even if the original question
cannot be answered based on the data.

3 5ciSnap! is a Snap! -library.

3 Examples for "Data and Information" 47

ACCESS to JSON3*-Data

Level: high school

Materials: JSON example
stations.json (contains the data of bicycle rental stations in New York)
stationsshort.json (shortened version of the file)

JSON is a string data structure that is stored as a file. Snap! can import such files w

and convert them into a nested list, as well as convert lists into JSON format and length
export them again using the <length> of <list> block, if necessary. So, we load the :ﬁ?rr:::msions
JSON data on our computer and import it directly into a variable we created before. flatten
Itis even easier if we simply drag the JSON file onto the Snap! window. In this case, fg::?;;s
a variable is created with the file name and filled with the file contents. lines

csv

In the project, current and freely accessible data that have been saved as JSON files) json

are to be evaluated. To do this, the learners must first research what JSON is, what structure the files have,
what data types can be represented in them. As an example we choose the data of the bicycle rental sta-
tions in New York, which are available in a file stations.json.3> In this case, the target of the transformation
is a structure that contains either an atomic quantity (logical value, number, string, ...) or a list that consists
of atomic quantities and/or partial lists that contain the type of the original data (list or dictionary) as the
first entry. In dictionaries, two-element lists with key/value pairs follow as further elements.

In our case the result of the data import looks a bit disappointing: [stationsshort

2 1 B

We therefore take a closer look at the second element of the sec- 1 executionTime 2017-02-20 10:17:53 AM |

ond line of the list - there seems to be something hidden. j_sttionBeanList 8 J
13 A B c D E F G H I J K
1 B B B 8 B E B B B B B
2 B B B B B B B B B B B
3 B B B =] B B B B B = B
4 B B B =] B B B B B =} B
5 B B B 8 B B B B B 3 B
6 B B B B B E B B =] B B
7 B B B =] B B B B B =| B
8 B B B =] B B B B B =} B
9 B B B 8 B B B B B B B
10 B B B 8 B B B B B8 3 B
11 B Z] B =] B B B B =] 3 B
12 B B B =] B B B B B S| B
13 H B B B B B B B H H =]

item @R of (151) @Ra A NYCitibike tripdata

34 JavaScript Object Notation
35 https://catalog.data.gov/dataset/citi-bike-live-station-feed-json-d1c27

3 Examples for "Data and Information" 48

This already looks more interesting. Let's see what the first line contains: 8 A B
1 id 72
2 stationNameW 52 St & 11
3 availableDoc 25
4 totalDocks 39
5 latitude 40.7672721¢
6 longitude -73.9939288
7 statusValue In Service
8 statusKey 1
9 availableBike 13
10 stAddress1 W 52 St & 11
11 stAddress2
12 city

13 postalCode
14 location
item @B of ([@%% - item @E> of (NYCitibike tripdata 15 altitude

6 testStation (E

17 lastCommun2017-02-20 -

So, these are the station data we are looking for. We il =ndMark 4

=

therefore store these elements in a new variable.

set stationdata | to! item @B of (1= @%4 i NYCitibike tripdata

From this data, a table is now to be created that contains only the columns Station name, Status and Avail-
able bikes.

set collecteddata | to collected data
13 A B ©
1 W52 St& 11 Ave In Service 13
2 Franklin St & W Broadway In Service 6
3 St James P| & Pearl St In Service 13
4 Atlantic Ave & Fort Greene PI In Service 17

/station data 6 W17 St & 8 Ave In Service 4
6 Park Ave & St Edwards St In Service
7 Lexington Ave & Classon Ave In Service 2
8 Barrow St & Hudson St In Service 19
9 MacDougal St & Prince St In Service 6
10 E 56 St & Madison Ave Not In Service 0
" Clinton St & Joralemon St In Service 5
12 Nassau St & Navy St In Service 12
13 Hudson St & Reade St In Service 0

If the data are available in list form, as is the case here, then their relevant part can easily be extracted and
evaluated - but what is "relevant" in this case? Of course, this depends on what is to be done with the data,
what information is sought. If we are interested in the number of available bicycles during the week, then
the evaluation will be different than if we want to show the distribution of bicycles over the city in a city
map. And maybe we are just looking for a free bike near the hotel.

And couldn't we have just left the whole thing to an SQL query? We would have if the data were present in
an SQL database. But in this case, they are not. So instead of giving an exact SQL description of the data we
are looking for and leaving its evaluation to the SQL server, we take action in this case by formulating the
exact description algorithmically. The result is the same. In any case, it is up to the human user to describe
his or her wishes so precisely that the machine receives a unique sequence of instructions that it needs to
compile the answer.

3 Examples for "Data and Information" 49

3.4 Communication without Human Partners

For this scenario, we need examples where data is collected by one system, transmitted to another, which
may well be running in the same computer, and evaluated there. The results of this evaluation are dis-
cussed.

License Plate Detection
Level: from middle school Materials: License plate detection

We want to deal with the wide field of character

recognition, i.e. extracting text from an image. As
an example, we choose license plate recognition, as

it is practiced e.g. in the toll barriers at highways.

We choose here the simple case, suitable for the intermediate level, that we are only interested in the
nationalities of the vehicles. *® Thus, we only need to recognize the characters in the blue area of the Euro-
pean license plate. Images for such tasks can be generated quickly and easily on the Internet.3’

We choose a very simple approach and hope that the numbers of pixels to represent these symbols differ.
This reduces the problem to the task of finding the blue area and counting the non-blue pixels in it. To be
independent of the size of the representation, we compare the pixels in the upper area ("Euro stars") with
those in the lower one. For simplicity, we work with global variables to transport data between the different
blocks.

First of all, we generate some license plates of dif-

ferent nationalities, import them as costumes and
write some methods that solve the subtasks.

BABC DE 123

look for blue in current costume

We have to find at least the blue area in the license
plate. We have already done something similar with

the galaxy images, for example. With the RGB limits _
- i : .
we have to experiment a bit, then it works fine. T =) XTI =

Since an image has quite a lot of pixels, we work report LT |

with the compiled version of map...over. Then the |-
 report (EY S oLl |

input names: | pixel

recognition is very fast.

over | pixels of costume cumrent

So far, we have the following partial result.

] - unknown - [0

set country | to

switch to costume License-plate'D |

switch to costume (look for blue in current costume

36 We can find a more detailed example on http://snapextensions.uni-goettingen.de/beispielsupermarkt.pdf.
There, in addition to character recognition, simple approaches to face recognition, etc. are also implemented.
37 For example, you can simply search the keyword "license plate".

http://snapextensions.uni-goettingen.de/beispielsupermarkt.pdf

3 Examples for "Data and Information"

50

The boundaries of the blue area can be easily found
if we search it starting from the left or right, top and
bottom. For clarity we mark the examined pixels in
red. The corresponding script is simple.

After that the borders of the blue area are known
as global variable leftX, rightX, upperY and
lowerY. In this area we can now count the inner
non-blue pixels, here separated into upper EURO-
and lower national-area.

count gray pixels

script variables | middleY X Y pixels pixel width

pixels |to' pixels | of costume current

width | o width | of costume current

middieY | to| round |

/2

lowerY + | upperY

y [, upperY
to [
to 1]

y > lowerY

EURO gray pixels
nation gray pixels

repeat until -
set x| tofliss

repet un

set pixel |to item I_r y - &P .. width +(x of (pixels

if . item &K of (pixel

¥ 'y = middleY

c.hange EURO gray pixels | by 1]

else
ange nationgray pixels | by ‘.

by &B
by €9

4255

c.hange X

change y

We receive as a total script for the recognition of
the nationality of EURO license plates:

o

switch to costume License-plate'D

set country

switch to costume (look for blue in current costume

switch to costume [set ranges

count gray pixels

set result | to| round l’ nation gray pixels /EURO gray pixels |3 &[0
i.I < 4 result | and € result } -

(| France|

set country

to [[E1

set country

if * 4 result |2 FH
w0

< fo0.

and 4 result

set country
else

L -unknown®-

set country

set ranges

script variables | pixels | x y | width height

warp

set width |to' width | of costume current

set height | to' height | of costume current

set pixels | to pixels | of costume current

set y |tol round ‘r height V€3

to il

set x

=
set pixel |to|item | [y — & EF width +x of (pixels

| &%
repeat until - < x -7 width
- € 4 width |3 + (x

r
replace item of (pixels with

st {255 o o]
change x | by &

set pixel |to item|f(y — &P 3 width +(x of { pixels

set lefiX |[to! x
set x ¢ th

set pixel |to| item [y —-&D h + of (pixels

(=%

repeat until’ € x |20 or { item of (pixel

= [255
- @

replace item |§ (y & width

Qiist [255 o [0 [255
change x | by &

of (pixels with

set pixel |to|item [y — & 3 width +(x of { pixels

. g
set rightX |to((x + P

tun

set x |to ruund[leftX + rightX

set y
/12

———————
set pixel |[to| item|[(y — @B B3 width }3 + (x of (pixels

==

repeat until - € y =0 height or € item @B of (pixel

replace item | y - &P)7 width +x of (pixels with

st [255 [0 [0 [285
change y | by &

-
set pixel |to|item [y — & EJ width of (pixels

set upperY |[toy — &

~{ 7%) height

set pixel |to| item [y — &P K th of (pixels

repeat until . { y | = [

or 4 item € of (pixel SIFEY

replace item (y - &P | width [J + x
list [255 [0 o'

Ehange y | by &B

of (pixels with

set pixel |to| item r y - &P |.: width +(x of (pixels

=

set lowerY to''y +o
==
report pixels

or € item @ of PTG = [255)

= [z

3 Examples for "Data and Information" 51

With these results, we can now investigate, on the (e GEE)
one hand, whether the initial solution approach
was useful at all, and if so, from which country the
license plate under investigation originated.

So much for the "technical" part. We can now easily imagine that the remaining part of a license plate can
also be determined with a little effort. The result of this process is then transmitted to another location and
evaluated there. This can be toll booths, police computers, We will first deal with the rather "uncritical"
case of a toll station.

Our license plate reader therefore reads license plates and transmits the result to the control center - as
data, e.g. "ABC DE 123". This data is evaluated there by the running program, as if it were information. In
this case, it is assumed, for example, that the vehicle with the specified license plate number is on the
Brenner freeway. If the relevant conditions are met, then the toll can be debited from the car owner's
account. What happens if the owner objects to the debit because he allegedly did not drive over the Bren-
ner, but was swimming at the Kochel lake? Human eyes for both are not found, only "the computer" thinks
to have identified the license plate on a picture. Is this case justiciable? Probably not, because computers
are not recognized as witnesses. Probably, in this case, the original image that the computer evaluated will
also have been stored, so that human experts can check whether the machine was mistaken. However, it
is easy to give scenarios where this verification does not take place or is not even possible, e.g., because
the person concerned does not know about his "identification". The movement data of a cell phone may
serve as an example, for which there are very different interested parties.

So, even in this case, the data transmitted by the image analysis has little to do with the information that is
derived from it. If this interpretation is outsourced to machines, then we quickly arrive at scenarios that are
to be located in the area of "computer science and society".

3 Examples for "Data and Information" 52

Streaming

Level: from middle school
Materials: Streaming

We use a project with two scenes,
one serving as the room where Susi
wants to listen to music, and the
other as the server room of the
streaming service provider. On the
server side, we maintain a list of cus-
tomer data that allows logging in and
perform billing (not realized in the
example) that depends on the usage
time. If the user account is empty,
then the connection is shut down.
On the client side there is Susi and
her laptop. The laptop establishes
the connection when the power but-
ton is pressed and terminates it
when the button is clicked a second
time.

numbers from €1 to 4

W in front of B
tem @ ot B

all but first of £

g ol B

st |
numbers from G to ¢
W in front of &
item D of
il bt fiest of B

o iiE

Of course, the students have to set up the accounting system on the server side first. However, their main

problem should be to establish a secure connection between the server and the client, where the transmit-

ted data cannot be read. Since there are very different solutions for this, this is a highly differentiating task.

We implement the solution here very simply without encryption via messages and scene changes. The lap-

top is responsible for establishing the connection, for example. It does this via scene changes to which it

attaches a message (as a list).

cusiomername to .

bank-accountnumber to .

customername to ElIG

bank accountnumber to

when I receive
eV Start-of-streaming! BT @l 2 SELTE

when I receive stop streaming

say ErTECnnel for @ secs

when I receive
bank account number | [~ Say, for @ secs
broadeast b

=

3 Examples for "Data and Information"

53

The button on the laptop simply controls switching on and off.

And Susi? She doesn't really do anything - except change costumes.

She doesn't want to do anything; she wants to chill!

when clicked

switch to costume Susisilent

when I receive start streaming

switch to costume Susi‘loud

when I receive stop streaming

.

switch to costume Susisilent

when I receive connection error

switch to costume Susisilent

think for & secs

when I receive stop
&

switch to costume Susi‘silent

The streaming server receives a message in the
form of a list when the scene changes. The first en-
try contains either the user data, which is then eval-
uated by the server, or the request to stop stream-
ing. And initially it sets up a list with customer data.

As you can see, the previous scripts are trivial. How-
ever, the solution can be greatly extended in very
different ways.

The data transmitted during the Logln process
should contain the information that the user (in this
case) is Susi. Obviously, this information may or
may not be correct. So, the data alone does not de-
termine the information content, but the whole
context is important, e.g. its security aspect, on
which depends how far the data is to be trusted.

clicked

when

set size to P %

switch to costume button-on

go to front | layer

to [

set state

when I am clicked

if < (state = [

——«
set state \ to m
b

switch to costume button-off

»

broadcast |start.
else

set state | to
p

switch to costume button-on

broadcast |stop v »

when I receive connection error

switch to costume button-on

go to front | layer

set state | to [

when I receive any message |/ message
script variables | search name i

.

if < is message a list |?

(¥ item B of (message | = [EEMY

set customername | to! item EIE of (1= 1 @4 -/ message
+

set i |to

-

set searchname | to I

= length | of (customer data

repeat until | et - 4
customer name i search name

to | item @B of (121" i /i customer data

if customer name # | search name

by &

set search name

change i

==

[

set bankaccount | to! item @K of (1211 @Kd i message

think M for @& secs
item @K of (I

bank account = customer data

to il
to
.
[sw]tch to scene next | and send

set customer name

set bank account

3 Examples for "Data and Information" 54

Zero Knowledge Authentication

Level: high school Materials: Zero knowledge protocol

set size to EIP %

-

(set n_|to EENI

—~

(set s |to @l
e
et v to((s Jls 1) mod n

—~
‘mgm(_pld:randnm

ﬂ;ipt variables
(list |
numbers from {

N in front of B

item K2 of B

The idea of the zero-knowledge protocol® is that a prover ("Bert") has to prove to a verifier ("Vera") that
he has certain information (the key) without the prover communicating this key over the network. For this
purpose, Vera poses tasks to the prover, the solution of which can only be guessed with a certain probability
p. The verifier has to prove that the verifier has the key. If p = 0.5 and the number of questions n = 10,
then this question chain could only be answered correctly by guessing with a probability of (0.5)¥ =
0.00097.. If we choose n higher, then the answering system can be authenticated with virtually any degree
of certainty. We choose a simple version of the Fiat-Shamir protocol, which runs as follows:

Presupposition:

Bert determines a large number n as the product of two large EESESFEEEE 10 W7
prime numbers: N = p*q. Then he chooses a number S which is set n | to

partially alien to n and calculates v = s2 mod n. He publishes n
and V. In our case, this is done by assigning values to two global

variables. set v [to({s F3's |) mod (n

38 https://de.wikipedia.org/wiki/Fiat-Shamir-Protokoll

3 Examples for "Data and Information" 55

For authentication, the following steps are then run through several times:

1. Bert determines a random number r and sends X = r> mod n to to (pick random ELP to ELP
Vera' set x |to r 23r mod ' n

broadcast join B4 x to Vera

set r

2. Veraremembers X, determines a random bit e (0 or 1) and sends it to Bert.

— r*q€
3. Bert calculates y = r*s® mod n and sends y to Vera. e TR T

set theMessage | to' split | message bvn
if ' item @K of (theMessage = [

set veraE | to item B9 of (theMessage

i (veraE =

broadcast

if QEEECEL I Task solved!
think for @ secs

)
.
think Ei for @& secs

S ——!

4. Vera checks if y> mod n = x*v® mod n and
reports the success or failure.

when I receive any message |"'rmessage
s..et theMessage | to | split (message by JEd
lfL item @B of (theMessage | =3
set bertX |to item @K of (theMessage

set e | to(pick random i to &P

e Tk
[[® item € of (theMessage | =

set bertY |to item @RS of (theMessage

n bertX x v mod '}

| broadcast Task solved! | to Bert

| broadcast Eror | to Bert |

RS mod ()

if bel ol
| broadcast Task solv | to Bert
el

se
| broadcast Eror | to Bert
)

In this case, too, data is transmitted between the communication partners. However, their content does
not result from the transmitted values, but from their coherence within the framework of the protocol,
which goes beyond the pure exchange of data. Thus, it is not about the data itself, but about its property
of being "correct".

4 Simple Examples 56

4 Simple Examples

The following examples each demonstrate a few aspects of Snap!. They are quick to implement and should
encourage modifications and extensions. Above all, they show how easy visualization is in Snap!.

4.1 A Lawn Mower

Level: from middle school Materials: Lawnmower

We provide the stage with the costume of a lawn

with a gray border, so we turn it into a modern lava

stone garden. For the sprite, we draw a lawn mow-

ing robot as a new costume. The robot is supposed

to mow the lawn, and it can do that in very differ-

ent ways. We realize a simple one that runs only

randomly. The robot overwrites the lawn back-

ground with the light green color of a freshly

mowed lawn.

Nevertheless, the task is not trivial. For example, is

when clicked
the lawn always completely mowed on the inside?

i 0,
What about the not mowed strip at the edge? Are set size to @& %
there more suitable robot movements for mowing? [EARSRE y: G

Which one does it the fastest? Is it possible to install LS TRTECTE 0 v

a timing system? Where is the robot's charging sta- FEE a0 2R el 10 |

=

tion and when should it approach it? What happens B FF R FFErES

to the plants in the lawn, e.g. spring tulips? Will the =SS
lawn grow back?

It can get as complicated as you like - and there are forever

b
move P steps

{t-urn e (pick random @) to P degrees

very different possible solutions to all questions.

4 Simple Examples 57

4.2 Inthe Aquarium

Level: from middle school Materials: Aquarium

We will look for a nice background image for the
stage (or draw one) and import it as the costume
of the stage. Then we create two sprites using the
button g Sprite-Coral and name them Mathilda
and Joe - whatever else. For each of them we draw
a fish costume.

Mathilda has little interest in other fish and swims
around the aquarium independently of them. If she | Ll S8 e
meets a wall, then she turns back. point in direction EIE

forever

turn &, (pick random @[to 1P degrees
| —

move §P steps
.
| if on edge, bounce

Joe is more interested in Mathilda than the rest of
the aquarium. He constantly looks in her direction |- 8= 0

and swims towards her. If he gets too close to her, ===

he carefully keeps his distance. He has his own ex- _ point towards Mathilda

periences. turn @, (pick random @D to [P degrees

We can very easily create more fish, forming a chain
altogether, as can sometimes be observed in large

marine aquariums. The introduction of a shark is
also simple. It swims towards other fish, but if it

gets too close to them, then they quickly run away.

More demanding is a real schooling, where many fish build a common structure. The strategies for this can
be found in the net®® and are also well realizable.

3 e, g. in https://de.wikipedia.org/wiki/Schwarmverhalten

4 Simple Examples

58

4.3 The Sun System?°

Level: high school Materials: Solar system

If there is a sun of mass M in the origin of the coor-

dinate system, the gravitational force on a planet
mM
r3

1 — — M -
of massmisF = —G - 'T,Soa=—G-r—3-r
The value of the local sun variable M is obtained by

other sprites using the ... of ... block (see figure).

We get an image of the sun and some planet im-
ages from the web and scale them down a lot. Then
we load them as costumes into a planet prototype
sprite called Earth. A second sprite called Sun
clears the screen and starts the simulation. Other
planets are created by cloning Earth.

Our Earth has a set of local variables that describe
its state. These include the velocity components vx
and vy, the acceleration components ax and ay,
and the distance from the sun r. The velocity values
are each set appropriately at the start of the simu-
lation by clicking the green flag.

The Sun clears the screen, sets its mass, and shows
itself in the center. Then it waits for a moment so

that the planets have enough time with the self-initialization and starts the
simulation by sending the message "go!". After that the Sun stops its activity.

The planets react to the message by measuring their current distance to the
sun. Then calculate the acceleration components ax and ay. These change the
corresponding velocity components VX and vy, and from this the new planet
position can be calculated. These processes are repeated continuously and re-
sult in the planetary orbits. All values were chosen in such a way that the or-

bital curves fit at least partially on the screen.

when I receive m

forever

W

X position show
y position duplicate
direction p clone
costume #
costume name parent___
size export...
width
height 'when h clicked
left
right
top switch to costume Earth
oo, go to x: €D v: ©
balance

—) | v

to Sun

set r to ' distance

when h clicked

set M |to

switch to costume Sun

go to x: P v: &

wait & XP secs

broadcast m » I

. u ot s P vomion) / (= KYED)

set ay |to|ll nog |of M |of Sun 2y position 11 / (v NED

ﬁange vx | by @
ﬁange W 7 ay
go to x: (| x position | + (v? y: [/ 'y position | + r\Ty

40 |n a rather simplified version: the sun is nailed to the center and the planets do not influence each other.

4 Simple Examples

4.4 Caesar-Encryption
Notes...

New N
Open._ el
Save g
Save As...

Level: from middle school
Materials: Caesar encryption

Import
| Export project...
Export summary...

We want to encrypt and decrypt simple
Export blocks...
Unused blocks...
Hide blocks...

Mew categary...

strings using the Caesar method. Since
this is hardcore computer science, we

New scene

need a very serious, somewhat boring

interface with a few buttons on it. We
import these from the Costumes library using the File menu.*!
We export the button image to a file. Using a graphics program,
we stretch it a bit and label it differently. We import the resulting
costumes again.

We create three new empty blocks named text input, encryption
and decryption and make our buttons react by calling one of
these blocks when clicked. To do this, we copy the button twice
using the context menu in the sprite area and change the cos-
tumes and called blocks accordingly. We drag the buttons to the
right place, change their names to bTextinput, for example, and
uncheck the draggable box. Now the button is fixed.

Then we create four global variables called original text, cipher-
text, decrypted text, and key, as well as a new sprite called Con-
trol, which makes for a very serious interface. To do this, it writes
some text on the stage. We display the four variables on the
screen with monitors (put a check mark in front of the variable
names) and switch to the large display using the context menus
in the display area. Then we drag them to suitable places behind
the texts.

Lastly, we enable the change of the key with the help of key-
strokes.

when M key pressed when down arrow | key pressed I

change koy | by @B i key >
change key | by &P
S —

I am cickod |

when h clicked

hide

|:\|oi|;t in direction k9

s\et pen color to

go to x: v:
L size EED

t_.;o to x: v:
T size

g;o B el 220 BN 40
write size @D
t_.;o to x: v: §
write size

write size @ZD
to .
to .
set decryptediext | to i
to E

set original text

set ciphertext

41 As you can see, there are also far more "interesting" costumes in the library!

4 Simple Examples 60

With this, our "user interface" is

Text Input
Ciphertext:
decrypted Text:
key: “

Change key with up- and down-keys

We now come to the actual functionality, which can be developed inde-

e

pendently. The text input is simple: we just ask for the original text. The ‘ text | input

output can also be made more beautiful in the process.
ask and wait

set originaltext | to ' answer

Caesar encryption consists of shifting all characters in the code (here: in Unicode) by the key length. The
last characters are shifted cyclically to the front. In the script below, this is done very verbosely, but - hope-
fully - readable. Note that the green length of text <string> block from the Operators palette works with
strings, while the brown <length> of <list> version from the Variables palette works with lists.

—

‘ encryption

script variables (i (char (code -:cipherchar -

a few script variables for detailed

set ciphortext ‘to B2 display A
7

seti |to delete old content

repeat until - i > length of text briginal text v

™ - - - edit all characters Vi
set char | to(letter (i of (original text -

T e ith ch ine ch
Fs:t code | to (unicode of [char get ith character and determine character code 7

v

convert lowercase to uppsrcase VA

-

2L decryption
the actual
Cassar

encryption/ script variables (code (cipherchar

set decryptedtext

_“_c'hange code | by &P s.ét =

set cipherchar | to ! unicode (code | as letter A4 repeat until © (i > \JH”UH‘J QS ciphertext
" = = =
giiach set cipherchar | to (letter (i of (ciphertext

cipherchar

- - = =
{set ciphertoxt |to join [ciphertext (cipherchar

- to B
[Crange i by G ciphertext ﬁ:t code | to (unicode of { cipherch.

hd

next step 7 =
change code | by (@GP x (key

if - (code <
Decryption is performed directly inverse to encryption. [change code | by @&

set char | to | unicode code as letter

™ - = =
{set decryptediext | to (join (decrypted text (char

| change i_| by @D

4 Simple Examples

61

4.5 Color Mixer

Level: from middle school Materials: Color mixer

We want to create and display mixed colors from
the primary colors red, green and blue in the usual
way. For this we have to know that colors in the
RGB model are represented by 4-element lists,
which contain the three color values and addition-
ally the "transparency" of the mixed colors, i.e.
their opacity. All four values come from the num-

ber range 0 to 255, so each can be stored by one

choose colors and
click me!

byte. If the pen is to draw in full red, then this is
achieved by the adjacent block.

So, we create three variables with the identifiers red, green and blue, display them
on the stage (place a check mark in front of the variable name) and place themin a
suitable position. Then we select the slider item from their context menus so that a
slider appears below the variable value, and then set the value for slider max to 255.
This allows us to select the desired color values simply by moving the slider.

After these preparations we can have an appropriately colored
square drawn under the red variable, and with slightly changed
coordinates also the green and the blue. And of course, as the
crowning glory of the project, a larger rectangle with the mixed
color belongs over everything.

The drawing process is started by clicking on a drawing pen, to
which we also assign a suitable costume for this purpose.

If we work together on the basic framework of this project, which
includes a red rectangle and the reaction to the pen's OnClick
event, then the missing three color areas can be created by the
learners themselves in direct analogy. And of course, there is
room for improvement:

e The colors should change immediately when a color value is
changed, not when the pen is clicked.

e The help is also kept very sparse. This can be done better!

e From physics lessons you know color circles, possibly with dif-
ferent transparency, which show the mixed colors. Is this also
possible in Snap!?

e Are there other color models than the RGB model? Which
ones? How do they work?

red [

2 normal

o large

o clider
slider min_..
slider max...
import...
raw data._.
export...

draw the red til

set pen RGB(A) | to(

-
go to x: EZIP y: ED
-

go to x: @D v: ED

go to x: @D y: GED
go to x: &I y: GED
go to x: EZI1P y: €D

say!

draw the red tile
draw the green tile
draw the blue tile
draw mixed color tile

==)" Hchoose*colorsand-click*me!

4 Simple Examples 62

4.6 Tasks

1. a: Find out about XOR encryption. Implement the procedure.
b: Find out about offset procedures for encryption. Implement such a procedure.

c: Learn about cryptanalysis. Implement a frequency analysis.

2. In the camel problem, the animal gets into a terrible situation be-
tween three pyramids. It moves purposefully towards a randomly /f} /fi}
selected pyramid. When it has covered exactly half the distance to
the pyramid, a spiteful desert ghost comes and whirls the poor
creature around so that it no longer knows which pyramid it was /»
heading for. The movement, of course, leaves an imprint on the £

screen, and the procedure starts all over again.

3. The goat problem pops up in the media every now and then. It 80€S uwmmees cwmmmimn s
like this: In a lottery, there are three doors, behind two of which is A B C
a goat, and behind the third is the main prize. The game master,
who knows the positions, asks the player to guess one door. Then
he opens one of the remaining doors, behind which there is a goat,
and offers the player to change his mind - or not. The question is:
should the do that? Realize the game and decide the question em-

pirically.

4. a: Desert ants live alone in the desert. When they leave the burrow,
they search the surrounding area for something to eat. When they (g
have found it, they run directly back to the burrow. Obviously they -'
remember which movements they have made in total. From these
they "calculate" the direct way back. Realize the procedure.

b: On their way to the burrow, the ants should leave a pheromone

trail that slowly evaporates. On this trail they find their way back
to the prey, get another piece and run back to the burrow, leaving
a new pheromone trail. If they have found nothing more, they
leave no new trail.

5 Simulation of a Spring Pendulum 63

5 Simulation of a Spring Pendulum

Level: high school Materials: Spring pendulum

In addition to the extensive freedom from syntax, the excellent visualization possibilities and the good-
natured behavior of Snap! in case of errors are an incentive for the learners to proceed experimentally and
thus to try out their own ideas. An experimental approach opens up possibilities for independent problem
solving instead of reproducing predefined results, especially at the beginning.

In the area of simulation, to which we can also count many of the usual games, we find enough simple, but
not trivial problems, which can already be worked on by beginners with a little good will. Experimental work
of course requires an interest in developing own ideas. So, we need problems that generate enough moti-
vation. As an example, we choose the simulation of a simple spring pendulum, which is suspended from a
periodically oscillating exciter. | know that an example from physics is not very motivating for all learners -
rather the opposite. But | do not give up hope!

Organization of Cooperation

If groups work largely independently of each other, it must be clear on the one hand in which framework
work is done, and on the other hand how the results can be compiled later.

To create a frame, you can create empty blocks with the right names as "dummies". These can be used
immediately in scripts, still without the functionality sought. The required objects can also be created and
given rudimentary behavior, such as responding to events: For example, you can output a speech bubble
with an explanatory text: "Now actually this and this should happen!" This program frame can be exported
or imported as a whole or in parts:

e The project can be exported with all its parts using the File menu. It will then ap-

Motes...
New AN

take you to the download folder where it was saved. From there it can be sent, Open.., "Q

. Save AS

imported (see picture) or dragged into any Snap! window and opened again. Save As...

pear at the bottom of the Snap! window. Clicking the arrow to the right of it will

e If there are global methods (blocks "for all sprites”) in the project, then another ﬂ:zr:ﬁg:'ﬁmwct..

Export summary...

item "Export blocks..." appears in the same menu. If this is clicked, then the blocks e biocks

to be exported can be selected in the window that appears. The additional blocks New category...
New scene

used in these blocks are automatically added, so that they are available again when Add scene...

the new blocks are imported. The saved blocks can be dragged into open Snap! Loranes..
Sounds...

windows, imported or sent like projects.
e Sprites can be exported as a whole with their local methods by selecting the "ex-
port..." item in their context menu in the sprite area. The re-import is done as de-

show

scribed above. duplicate
clone
o [fimages of scripts are saved, then they contain the code of the mapped blocks. If delete
parent...
such an image is imported as a costume, then the mapped blocks can be recreated export .

with "get blocks" from the context menu of the costume in the script area.

e Within a project, scripts can be transferred from one object to the next by dragging them from the sprite
in which they are located at the script level to the sprite in the sprite area that is to be supplied with the
script. The addressee will be highlighted a bit when "dragged" if it has noticed that it is meant.

5 Simulation of a Spring Pendulum 64

The example of a spring pendulum contains
several parts that work largely inde- _

pendently, so that group work with division

of the tasks is almost inevitable.

We identify
e an exciter, the dark plate at the top-left, /
which periodically oscillates vertically. ‘

Its frequency ® is an instance variable
and can be changed in the variable dis-
play.

e a ball hanging relatively stupidly on a thread, but at least it knows the basic equation of mechanics.

e a thread that has to redraw itself again and again so that we don't see any protruding ends on the
screen.
e apen that records the diagram of the movement.

e aclock for the common time.

The Clock

We create a new sprite and draw a simple clock as its costume. Clicking

on the green flag we choose this costume for the clock and send it to \i=1 h clicked

the right-top corner. After the clock is started using the start message T

(green flag clicked), it resets the timer built into Snap! and continuously
remembers the current time in the variable t, which we also display.*?
Since the time t logically belongs to the clock, we declare it as a local
variable. Local variable is accessed from other objects via the <attrib-
ute> of <object> block of the Sensing palette. We export the clock

sprite to the Clock.xml file as specified.

Extension: Let the sprite show the time by moving the hands correctly.

The Exciter

We draw a simple rectangle symbolizing a plate suspended somewhere. Since the plate should only oscillate
vertically, it needs a fixed x-coordinate on the screen (here: -200) as well as a zero position in y-direction
(here: 150). Around these it oscillates with a fixed amplitude (here: 10) with a variable angular frequency ®
(here: 150). In the course of time t, which initially has the value zero, the y-coordinate is then calculated to
be

y =150 + 10 * sin(wt).

42 Of course, we could have accessed the timer time directly instead. But | want to show access to local varia-
bles from other objects.

5 Simulation of a Spring Pendulum

65

This information can be translated directly into a
script.

The script starts its work when the start message is
sent. Since the scripts of the other parts have to be
started at the same time, this option is suitable.

More interesting are the variables used. The time is imported from the
clock. The frequency is not needed in any other script and therefore
should be declared locally. You can change it using the arrow keys.

We export the sprite as described as Exciter.xml.

Extension: Also have the "laboratory ceiling" drawn against which the
exciter oscillates. Alternatively, a shaft can rotate, which leads to a ver-

tical periodic motion via a deflection roller.

The Thread

The thread replaces the spring. It has only one property, the spring con-
stant D. This is set once to a fixed value, then a bright vertical line is
drawn at the location of the thread, which deletes its old representation
(of course, this can also be done more elegantly). After that, the current
thread deflection is drawn. We export the object as Thread.xml.

Extension: Instead of the simple thread, draw a spiral spring
with a constant number of turns that stretches and contracts again.

The Ball

Our knowledge of physics, which can be quite poor,
is "built into" the ball: We know the basic equation
of mechanics F = m*a as well as Hooke's law F =
D*s where s is the deflection from the zero posi-
tion. Furthermore, the acceleration a is known as
velocity change per time unit and the velocity Vv as
displacement change per time unit. Nothing else.
As local variables we need the quantities to be cal-
culated as well as the mass m. We convert this
knowledge into a sequence of commands: we de-
termine the momentary displacement s, from it F,
from it @, from it v and from it the new position.

We export the ball as Ball.xml.

when clicked

switch to costume Exciter

set x to &P

set w | to [E
forever

D

when up arrow | key pressed

if' (@ < OG0

change w| by @B

when down arow | key pressed
’ change w | by &P

when clicked

<=

hide

pen up

set x to

pen down

set M to

forever

set pen color to [l
I set y to
T§Et y to &1
set y to | y'positon | of Ball |

|
set pen color to
—

set y to | yposition | of Exciter

when clicked

;witch to costume Ball
CLROPEN -200 BN O)
set size to @ %
s:t m |to

set d0 |tol yposition |of Exciter — y position

forever

~

T D B

[

set F [to!' D | of Thread

>

set a |to F /' 'm

change v byo

change y by | v
e

Extension: Introduce a friction constant R that reduces the speed by a certain (small) percentage. R should

also be interactively changeable within a reasonable range.

5 Simulation of a Spring Pendulum 66

The Pen

The pen has no local variables. It moves slowly from
when h clicked

left to right and moves in y-direction to the y-position
point in direction 5

set size to P % »

go to x: y: ‘ position | of Ball

of the ball. Thereby it writes. As a little treat, we add
the function that it starts writing again when it has
reached the right edge.

We export the pen as Pen.xml.
set pen color to |

Extension: Introduce a way for the pen to run at dif- EEEENETLRCN 2

forever

go to x: ((x position | + @FB y: “'{ position | of Ball

i x position | >
go to x: y: [y'position | of Ball
nleaT

2]

ferent speeds.

Why is this a simulation?

Our example contains some basic physics, but there is nothing about resonance, beat etc. in it. Neverthe-
less, they appear in the simulation. We check with the program whether the consequences ,,necessary from
thinking” (acc. to Heinrich Hertz) of the basic knowledge agree with the observations in the experiment,
whether our conceptions of the physical relations thus result in the observed behavior. We simulate a sys-
tem to check our ideas. As a tool for this, instead of mathematics, we use an algorithm that tracks the
system behavior over a sequence of small temporal changes. So instead of integrating "mathematically,"
we iterate "informatically." Except in the simple cases, a tool for integrating a differential equation system
does nothing else either.

Something completely different is an animation into which the observed behavior is programmed. Here no
new phenomena can arise because everything is known. Animations represent something, simulations can
lead to real surprises.

6 Troubleshooting in Snap! 67

6 Troubleshooting in Snap!

Level: high school Materials: Towers of Hanoi

Snap! visualizes the program flow without requiring any special activities from the learners. This alone
makes many errors "visible" that would otherwise require tedious analysis of code to find. For example, if
a body moves in the wrong direction, then it is pretty clear what to look for.

Since global and local variables can be displayed in a monitor on stage by
setting the checkmarks in front of the variable name, their change is also
directly observable. Script variables can be displayed in the same way if the
blocks show variable <name> or hide variable <name> are included in
the script. An important aspect of troubleshooting is the "freezing" of vari-
able assignments when the program is stopped: if the program is inter-
rupted or terminated, the current values of the variables are retained and
can be inspected.

Control output during program run can be easily achieved with the blocks of the LOOKS palette: say
<something> for <n> secs and its relatives also allow the output of more complex expressions so that
those can be followed on the screen. The wait <n> secs and wait until <condition> blocks allow pauses
in the program flow at certain points and/or when certain conditions occur.

If the sequence of the entire program is to be followed step by step, then the Visible Stepping n
must be switched on at the top next to the output window.

After that, the footsteps appear in light green, and a slider appears next to them that determines the step-
ping speed. A button for interrupting or starting stepping appears between the green flag and the red stop
button. If the speed slider is on the far left, then the program can be stepped through in single steps. The
currently executed block appears in light green.

@ R M

If the program flow is to be followed also within the own blocks, then

these must be opened before the start of the program in the editor. The
blocks can also be nested.
script variables (i
[seti |to
[:ITow variable i |

repeat &00)

wait until

change i | by &

o) n

6 _ Troubleshooting in Snap! 68

We want to follow the processes by means of a small example. For whatever

Maks & varigbls

Delsts & varisble

reason - the problem of the "Towers of Hanoi" is to be processed. For this we
draw a disk and assign this costume to a sprite Disk. Further disks are to be
created by cloning. For this we wrote a method create <n> discs - but it)
doesn't work. Too bad! W ¢ stackA

|° create ' n # discs

< ~ =
script variables ' i newClone

Q delete all discs
videlete all dis

—_— .
set newClone | to (@ new clone of myself
-

tell newClone to | set size to | @I m o 1606 & CosoT ook
n - S~ — Hmm...

tell newClone [to | set color | effect to (@ x (i of Disc expecting a list but getting a nothing
=~ The question came up at

N
tell newClone |to

| go to x: GED v: (@TD + (@I 1D

add (newClone to B

| change i | by €D Q create @) discs [

To locate the error, we open the method in the ed- te [newclone Jtol .

itor, click the Visible Stepping button, set the de- : : " Disc
sired speed, and then click the new block again. In : A A

the editor we can follow how the commands are

add (newClone to B

change i | by &

called - and where it goes wrong.

Something is missing! We add the missing list variable stackA in the block, and this part at least runs fine.

Further blocks that can be helpful for troubleshoot- — S
. catch (tag pause all |}
ing can be found in the libraries. They are described =

by their own help pages, which are called via their

- stop all
context menus. 11117 |catchtag

all

4 —— all scenes
_catch (tag | | this script

this block
all but this script
other scripts in sprite

Brerioemppthe e However, the - for me - most essential possibility
the catch block

to the throw block. e for troubleshooting is to take blocks out of the

either tag

= scripts and "just leave them" next to them. If a

You can change the tag’s name
by clicking on it without
dragging; then you can nest
more than one catch block:

script works afterwards, the blocks can be inserted

o) again one after the other. Mostly the error can be

narrowed down quickly in this way.

7 Lists and Related Structures 69

7 Lists and Related Structures

Snap! knows beside atomic data types like numbers, logical values and L I®
characters the structured types string and list. The strings follow later be-
cause they allow many special applications. In this section we will first discuss [l in front of B]

item @B of B

lists, which are practically always needed. From them all higher structures can
be built easily. The use of lists will first be shown in a simple case - sorting -

followed by more complex applications.
B contains
Lists are so-called references, i.e. addresses that "point" to a certain memory GEETE

area where the actual data is located. If this is not taken into account, annoy- €& over B

ing errors can occur. For example, several list variables can point to the same ‘i EEES

data area. If, for example, you change this data by accessing it via a list varia- s

ble, the changes also affect the other variables, as long as they refer to the
for each item in B

same data. Such errors can be avoided, for example, by creating copies of the
lists. Then we can work with them without interfering with the remaining op-

& & E-.g_
g‘a
gla
E

L

i to B
delete of B
insert at =
replace item @K of B with

7.1 Sorting with Lists - by Selection el
reshape B to € &

combinations B B

erations.

Level: from middle school Materials: Selection sort

The example is kept extremely simple: it uses only global variables and blocks without parameters, i.e. mac-
ros that serve to summarize a command sequence under a new name. Since it additionally exploits the
visualization possibilities of Snap! it is well suited as an introductory example.

We start with an empty Snap! project. If we want to sort something, then the elements to be sorted have
to be stored somewhere. For this purpose, there are variables, which can be thought of as "boxes" that can
hold any content. For the storage of several elements there are lists, a kind of "box series". The blocks for
editing variables and lists can be found in the Variables palette in brown.

By the way: The magnifying glass for searching in the top-right corner of the |emm

palettes shows us candidates for blocks that match the search pattern. Among iaekiad-Lo L2 2T)
'new sound & rate Hz

them we also find blocks written by ourselves and some that are not in the
palettes at all.

So, we create a variable called unsorted numbers and assign an empty
list to it. (Using the arrow keys in the list block, we could also specify | Rlrae ety S L A
initial values in the free spaces that would be created. The type of the

inserted variables does not matter: lists can hold anything, and in any unsorted numbers
order). If the variable is created, it appears as a watcher on the stage.

There we can choose different display formats in the context menu or
position the list as a dialog arbitrarily in the Snap! window.

table view...

. length: | bleckify

export
open in dialeg...

7 Lists and Related Structures

70

In the same way we create a second list of sorted
numbers, which will later contain the sorted data.
First of all, we need unsorted data - as usual ran-
dom numbers. We create them with a small script,
where the number of numbers results from the
number of repetitions in the loop.

We try the script several times - we always get a
new list of numbers. Great! Full of pride we form a
new block called generate new numbers. (Right
click on the script layer.) In this one we simply ap-
pend our script to the "hat" with the block name.
Done - we have written a new command! We can
find it at the bottom of the Variables palette - if we
have not specified anything else.

From this list of numbers, we now want to pick out
the smallest number. Let's assume that the first
number is already the smallest. Then we look at all
the following numbers. If one is smaller than the
previous smallest number, we remember it. If we
are through, then we "report" the result - we write
a function get smallest number.

That also works fine. But only once because we
can't find the next smallest number this way. This is
only possible if we remove the smallest number
from the list each time. Because we only know
which was the smallest number after the entire run,
we remember its value as well as its place - and
throw it out after the run through the list.

Sorting a list is now quite simple: we take the small-
est number from the unsorted list one by one and
put it into the sorted one. That's it. We wrap the
script again in a new block, which we call selection
sort.

sorted numbers |

(unsorted numbers

set unsoriednumbers | to ' list

-

‘ generate new numbers

N
set unsortednumbers | o ' list

repeat until * G > length | of (unsorted numbers

of (unsorted numbers < { smallest number

‘ set smallestnumber | to item (i = of (unsorted numbers

change i | by &P

report ' smallest number

(get smallest number

N -

set smallestnumber | to item @JE® of (unsorted numbers
N

set position \ to

N

> of (unsorted numbers

repeat until / (i length

of (unsorted numbers < { smallest number

‘ set smallestnumber | to item (i = of (unsorted numbers

[_s:t position | to 6

change i | by €D

delete (position ' of (unsorted numbers

report smallest number

—~_
‘ selection sort

N
set sorted numbers ‘to list
repeat longth | of { unsorted numbers

add (get smallest number ' to (sorted numbers
= =

(unsorted numbers | (sorted numbers

7 Lists and Related Structures

71

7.2 Sorting with Lists - Quicksort

Level: high school Materials: Quicksort

As a second, recursive, example we want to implement
Quicksort® in the same environment as above. For this we
first write a more elegant method for generating new
numbers, which uses a parameter and local script varia-
ble. With this we can specify how many numbers we want
to have. To be able to handle larger sets of numbers, we
wrap everything in a warp block.

Quicksort is started by specifying the list to be sorted.

The actual work is done in the block devide and arrange
the list <I> between <left> and <right>. As pivot ele-
ment we select there the middle of the respective sub-list.

numbers

.

set i

set e

length: 10 length: 100 %/

=

repeat until -

We can sort 10,000 random numbers with it in

about 2 seconds.

change |i

devide and arrange the list list between &P and longth

devide and arrange the list ‘| :

script variables ' li | re

<_|tem li of (1

generate n # new numbers

script variables (result

set rosult | to ' list

repeat ' n

add (pick random &P to €D to (result

report result

set numbers | to (generate @ new numbers

quicksort { numbers

‘ quicksort (list :

of (list

left #

between and | right #

pivot]

to

. right

Set pivot | t0] item [Found (i) + Cright

li >re

-~ pivot 0l< item (li of {1 — pivot

by €

& item (re of (1

change ro

or{ item (re of (|

2 pivot =7

by &B

T e 500)
set h
replace item (i of (|
lreplace item (re of (1
Pchange li

change ro

devide and arrange the list ' |

-0
to item (li of (I

N iten
with (h

by €9
by &B

between ' left and 're

between ' li and ' right

43 The procedure can be found in various versions on the Internet, e.g. at http://de.wikipedia.org/wiki/Quick-

sort. Here, an in-place implementation was chosen.

7 Lists and Related Structures 72

7.3 Shortest paths with the Dijkstra method

Level: high school Materials: Dijkstra routing

Let a graph be given by an adjacency list. In this

list all nodes of the graph are listed, from each of
which lists "go out", in which the neighboring
nodes with the respective distances are entered:
i.e. those nodes to which a direct connection exists.
As examples a very simple graph and its adjacency

list are given.

To work on the problem we need a specialist, of

course: we draw Mr. D. He must be able to gener-

ate the adjacency list of a given graph. We simply
draw the graph on the background - here donevery
tastefully. B o A3 o D[1 cC| 4

N}

A 4

C B4 J D7 JE]s
A 4

D K B Jcl7
A 4

E Jcls

set a | to list

We create the list statically by inserting the appro- .
add l\ 0 st ((L2EN lis

priate elements into a local list, which we return as
the result of the operation.

The global variable adjacencyList then receives

these values via a simple assignment. set adiacencylist | to (new adjacency list

7 Lists and Related Structures 73

For further processing we need three other lists: the list of openTuples takes tuples containing the name
of the node, its total distance from the start node and the name of the predecessor node; the list distances
takes tuples containing the name of the node and its total distance from the start node, it is re-sorted for
new entries so that the node with the shortest distance from the start is in front; the list finishedNodes
contains the names of the nodes that have already been finished.
We summarize the setup of these lists for the start in a method \ initialization start= (start = A

initialization, which is also passed the name of the start node.

delete of (openTuples

After its call the following picture results. delete @I of (finishedNodes
finishedNodes

openTuples distances delete @ of (distances
N B c n :
1 A 0 -
g length: 01

The path search is relatively simple in this

‘x

perform one step

version, because most of the "intelligence"

s\gript variablgﬁs -
(neighbors (currentTuple (currentNode (dist (neighbor (i

done in the method perform one step. (currentIndex

set currentTuple | to ' item @B of (openTuples
For the tuple currentTuple with the PRSP g

smallest distance, the new distances are | Fic e oo bl 1 -0l o e

was put into the handling of the lists. This is

8

calculated for the neighboring nodes. set dist | toitem @R of (currentTuple

~

set currentindex | to | [{ unicode of (currentNode | 5N unicode of + &D
-

set neighbors | to | item @9 of (111l currentIndex |

Then the node is marked as edited and -
add (currentNode to {finishedNodes

all unedited neighbors with new total

rrentNode | dist to (distances

distance and predecessor nodes are en-
terEd intO OpenTupeIS repeat longth | of (neighbors

em @B of (neighbor) eighbor = | + (dist
" currentNode
(openTuples

| change i | by €D

This list is sorted by distance and tuples Lt EliilEs

double tupl
with larger distances are deleted. e

Except for the three auxiliary methods, the routing is now com-
routing from . A to (to

plete:

set adjacencylist | to (new adjacency list

initialization start= from
repeat longih | of (adjacencyList

_
Lperform one step

~ -
show result to ' to

7 Lists and Related Structures 74

We have seen above how to sort. Here it is done by selecting the smallest.

—~

‘ sort open tuples

script variables / ':sortedTuples

the sortedTuples list takes in the sorted tuples

set sortedTuples ‘to list

repeat longth | of (openTuples

e Assumption that the smallest distance is at the ver
‘ set min | to item EES (RN S openTuples P y

- front.
(set pos | to

set i | to
repeat g I |) find even smaller distances if necessary

it item @R of B0 47 openTuples < (min

—

‘ set min | to| item @F of ("i)i openTuples

set pos to (J—

| change i _| by €D
add the tuple with the smallest distance to sortedTu-
ples and delete it in openTuples

add (121]E i’ openTuples | to (sortedTuples

delete pos of (openTuples

delete @K of (openTuples

repeat longth | of (sortedTuples

add (1250 &K% i sortedTuples) to (openTuples lastly copy back the sorted list

b

delete @B of (sortedTuples

—

Now, for each node, the tuple with the smallest dis- \ remove double tuples

~

tance is at the front of the list. If there are other tu- : .
script variables 'k (i

ples for this node, they are deleted. Then we only s to [l
have to find the distance to the searched node from

the distances list and let Mr. D. display it.

repeat until (i > lengih | of (openTuples

set k |to item @K of €

—~—
‘ show result to !

script variables (e if _ | item of (Il

set i | to delete | _'|_ of (openTuples
set dist | to n else

= = change |
repeat until © i length | of { distances L g€)

| change i | by (1}

change i | by &B

if - (dist = K]

think [t for &P secs

else

think { join (dist for @[secs

Mr. D.

7 Lists and Related Structures 75

7.4 Matrices and own Loops

Level: high school Materials: Matrices

If we have lists with direct access to each element, then we don't really need special arrays, stacks, queues,
etc. All higher data structures can be built from lists. Nevertheless, we will build the data structure matrix,
because it is traditionally used e.g. for adjacency matrices. (Attention: for the sake of brevity, we will omit
all security checks!)

We package a matrix in a list, of course. For this we declare (arbitrarily) the following list structure:
[[list with sizes of the index ranges] [list with Data.........]]

The dimension of the matrix then results directly from the entries of the first partial list. A two-dimensional
array with two values per row would have the following structure: [[2,3] [1,2,3,4,5,6]]

We create a two-dimensional matrix of size a X b by generating

new Matrix [(a #

the two desired lists. The first one contains the two passed pa-
rameters, the second one should be marked as empty, e.g. by a
minus sign for each element. We return the result. We use global

methods, which we assign to the Variables palette. The syntax =+ a xb
add § to (TINEEERANS S matrix

can be chosen completely freely, for example also with brackets,
if you like that.

Now we write values into the matrix with set, nice

and clear. We calculate the position of the place to —
set ' matrix :

be changed using the dimensions. Then we over- . —
script variables | pos

write the corresponding entry. o

setm [GD. . @]to

replace item (pos’ of (17 @ZEEY - matrix) with (value

To read matrix entries, use the method get.

33 o GRS |
get(m [n r e 1 /_) script variables (pos

set pos_ | to

In many programming languages the

for-loop is the common tool to ste — —
P P step . step # |..do . script A

through matrices. In Snap! we can
find something like this in the Control
palette, but we can also write such a

control structure ourselves, e.g. to
provide it with a step size. For this we hange = 7 step
create a new block for <variable>
from <start> to <end> step <step>
do <script> and take a closer look at
the nature of the parameters.

7 Lists and Related Structures 76

We mark the index variable i as upvar. This allows its

name to be changed "externally", although its internal
name remains the same - i.e. i.

start, end and step are normal numerical parameters.

We mark the script as a C-shaped command. Thus, it
is considered as a command sequence which is passed
to the block unchanged, i.e. not evaluated.

C-shaped ensures that the block has the usual ap-

ﬂ) Delete | Cancel l
pearance of Snap! commands, where the sequence of

commands to be executed is inserted into the "mouth"
e C from @ to @ step @ do
of the C.

Using this type of loop, we can quickly fill a matrix with
random numbers. set m |to new Matrix [@D , €]
from &P to &P step EP do
from "1 to/3 step’1 do

(b] to (pick random &P to €D

—

show matrix (matrix :

height (row
— — ——————
set width | to ! item K9 of (11K 1i¥ matrix
set height | to | item of (LELNEIRI A matrix

Finally, we want to display the matrix "properly" on the
screen, i.e. in the usual two-dimensional table form. To

SR i do this, we create a list that is filled with sub-lists, the
set row |to ' list

for @ from 1 to {[) step "1 do

add (/=4 matrix |i{a [/'b }i|} to (row

rows of the matrix, that contain the table data. This list
is then displayed and can then be moved anywhere
with open in dialog... from its context menu.

add (row to (result

-

s P
say (result

3 A B

1 16 24
Z 24 42
3 5 24

7 Lists and Related Structures 77

7.5 Higher Level List Operations

In the Variables palette we find some fast blocks that allow more
complex operations even on large lists. The most important of
them is the map ... over... block. It applies a script located in the
gray ring to all elements of a list in order and returns the results as
a new list. In the default case, the current list element is inserted .

for each (item in B
into a placeholder left empty in the script. If you want to make it

more readable, then you assign a name for the element and use

that in the script. If you need the index of the list element, you get
append E B

that in the field after the element name. After that you will find a
reference to the complete list. reshape B to €D

combinations B B

As an example, let's create a copy of a list. The first
list should simply consist of the first 100,000 natural == AR G 8T el g 1 RGN 100000
numbers.

From this list we can now create copies in different - —— y—
P set list2 |to' map | over (list1

ways. In the simplest case, by using the
map...over... function directly. But : =
we can also name the old list element RS ANACILL] ((element input names: | over (list1

and return it under the name, and we

set list2 | to

can also do this explicitly using the re- —
map || report element | i : over (list1

port block.

Of course, we can also use one of these versions within a new

block for copying simple lists. | copy of simple (list :

report map (over (list

And if you remember that lists can also contain fur- :
ther sub-lists, then of course these must also be cop- ==l IEZNER L LT AL ST a8 T 2 |
ied separately in the case of a copy - nicely recursive.

full copy of (list :

if _ is (element a list | 2

(LU full copy of (element —_—
input names: | element over

else

In some cases, you may want to take advantage of the speed of the map...over... block to search a list. As
an example, we want to find the largest element of a list. Since the map...over... block must return a new
list element for each element, we cannot simply get the largest element we are looking for as a result.
Instead, we run through the list and determine the largest element separately as a side effect. We ignore
the results of the actual function call, e.g. by assigning them to a dummy variable and not using them fur-
ther.

7 Lists and Related Structures 78

First, we need unsorted numbers,

map II_.:port ! pick random &P to LI
r rs from /1 ' to [100000

which we quickly create using the [SEUlELES)
map...over... block.

After that, we pick the largest number [biggestnumber | to [

out of these 100,000 values by going [kb

through the list and finding the largest i\ number > (biggest number

number in each case. We simply re- |l - COEEEEGIEER) number SRR DL L TR
turn "nothing" as elements of the re- [report N

sult list. over (listl

A special control structure for traversing a list is the block for each (GGERD in E

for each...in.... In the libraries you can also find a version

that allows access to the index. Also, with this block we can
determine the largest number of a list. But this is only fast set biggostnumbor | to [I]
for long lists if we use the warp block - but then very fast. warp

for each {number in (list1

|- s\et biggest number | to m

Another very useful block is the keep items...from... block. It contains a predicate in the gray ring, i.e. a
function that returns either true or false, which is applied to all list items. The result is a list containing only
the list items evaluated as true.

We take again the just generated list [rEREs (5
with 100,000 random numbers and [REERITLES = [Jinput names: (value
want to find out from this only those, KUzl

which are even, i.e. divisible by 2.
Here, too, we get access to the list element, its index and the total list via the small black arrows on the
right of the gray ring.

The block find first item ...in... works i irst i (value < input names: (value

very similar. It finds the first item that
. . . find first item (< (value < [l = input name
matches the given predicate. If it does

not find an item, then it returns "noth-

find first item | ¢ not

ing". The block is useful, for example,
to make sure that there are no "ille-
gal" elements in a list. For example, if we want to perform arithmetic operations on the list elements, then
there should be only numbers in the list.

If you want to perform an arithmetic, logical or list operation on all list elements, you use the combine
...using ... block. It successively applies the specified binary operator to the entire list. As an example, we
want to calculate the sum of the list elements of list1.

combine (listl using (@ + @ g

7 Lists and Related Structures

79

If the list contains strings, we can .
& set lisi2 . to list [OEcH ooy on B
form a long word from it.

Clara, there you are!
e
combine (list2 ' using | join | B ~

And of course, we can combine the
higher list operations, e.g. by compu-
ting the sum of all multiples of 231 of (it
a list.

Using the append block you can append lists to each other.

append !f‘_u,,m,- b rom to ~

- r pRm— 20805015
combine (I’.’J','Ju items 231 = from | [E150) BTEI T 7_)

W N =

S

@

o~

And the reshape block "reformats" a list to 3 A B c E
other dimensions. 1 1 2 3 4 5
2 6 7 8 9 10
3 11 12 13 14 15
[ZEUELEN numbers from (1 (to (15 (BTN 3 W5 ~
15 A B
The combinations block is the Cartesian product of several sets. It L 1 1
i ‘ . 2 1 12
combines (in the case of two sets) all elements of one set with all ele- 5 ; i
ments of the other set. 4 1 14
5 1 15
6 P 11
7 P 12
8 P 13
9 2 14
10 2 15
11 3 11
12 3 12
13 3 13
14 3 14
- . — Y o 3 5
G LI ETC L E) numbers from 1 (to (3 | N numbers from [11 | to 2

And as a last note: the possibilities of the ...of... block should be con-

sidered if needed, e.g. to reverse the order of a list.

numbe

reverse | of

7 Lists and Related Structures

7.6 Recursive List Operations

After the very powerful blocks, let's briefly look at the more elementary blocks
for recursive programming. All advanced operations can be built from these.
Not too efficient, but elegant. The first block allows to insert an element at the
front of a list, the second returns the first element®. The third block returns
the remaining list after the first element, and the last one checks if a list is

empty.

We can think of lists as pairs consisting of a first el-
ement and the rest, and these pair elements can
also be empty. Traditionally, they are called car
(pronounced "carr") and cdr ("cudder"). As an ex-
ample for the application, we want to determine
the length of a list.

In a very similar way, we can insert a new list ele-
ment at a specified place in a list. If the list is empty,
then we simply return a list containing only the new
element. Otherwise, we check whether the ele-
ment should be added at the front, and if so, we do
so. If this is not the case either, we supply a list that
contains the first element at the front and a list in
which the new element is placed before the previ-
ous one, but in the rest of the list.

4 Or any other, but let's forget about that.

Hl in front of B

all but first of B

length of (list :

if is (list empty?

report |1 FSWENT I GROE all but first of [list

| insert (element) at (n# =1 of (list :
if is (Tlist empty?

500 (element in front of (list

..
TECL 33 4 U8 numbers from © 1 to /10 |

11 ¥

"E length: /

7 Lists and Related Structures 81

7.7 Hyperblocks

Some of the e.g. arithmetic operators have been extended in Snap! so that they can also be applied to lists.
The result are extraordinarily fast list operations that allow, for example, the manipulation of animated
images in real time. Hyperblocks can thus be applied to large amounts of data and are therefore suited to
handling media. Some of the operations are immediately obvious, but some take quite a bit of getting used
to. One should test the procedures in each case with small test lists, before one "lets them loose" on large
data sets. Although many of the operations are based on mathematical procedures, they often do not pro-
vide mathematically correct results, e.g. because they are not mathematically permissible due to different
dimensions. However, if you want to implement e.g. a matrix multiplication (see below), then it makes
sense to check the dimensions in advance and then let the hyperblocks work. A detailed description of the
hyperblocks can be found in the Snap! manual.

Let's start with the simple operations. In many cases the operation of the hyperblocks
is very obvious, because it is an application of the operator to all elements of one list.

=

e B — 5 ¥
b &) - numbers from P to & \/L

[y

&P + numbers from EP o & s —
VR N
& % numbers from §P to &

=5

Co]
N

N

(S

| 25
& ~ numbers from P to & \/L

Applying an operation to lists also works if the list consists of partial lists, as
is the case with the pixel list of an image. We select any image ...

... and then switch to one modified by "coarsening" the value range.

switch to costume

x PN pixels of costume current |/ @ES

The operation is fast enough to transform, for example, video images in real

time.

7 Lists and Related Structures 82

The results are somewhat more surprising when using multiple lists. Here, too, the op-

1)\

1“,
erators are applied successively to the list elements. With the addition of lists of equal N 7 |
length this is still clear ... B o E

_ S— 53w
. but with lists of different (UlEENICT &P to & | + numbers from P to & \}%

1)\
length you have to know that 1
2K

e — il A
" numbers from &P to € + numbers from &P to & \/L

In multiplication, the elements are also processed in sequence. So, it is neither a scalar

the result will be truncated.

1 Y
1“.
nor a vector nor a matrix product in the mathematical sense. The operator is applied 4 10 |
regarding the "reductions" in direct analogy to the addition. H 18 F
— — - A
‘numbers from &P to P x numbers from P to &) \}‘M
qn)\
d 10 F

e — Il A
" numbers from &P to € x numbers from €P to & \/L

If you process more complex list structures, you should read the manual beforehand to understand how
they are handled. As an example, for the use of empty lists as a "direction flag", the following example
shows how columns of a matrix can be filled out.

First, the list elements are created and

put into matrix form. Note that the Set| matrix . |'to! reshape QUTHEEER T NERN YRS to & &9

first parameter determines the num- | matrix) "
ber of rows, the second the number of @ A o |
, 1 1 2 3
columns. So, you get a 4 X 6 matrix. 5 5 5 .
3 9 10 11 12
4 13 14 15 16 5
5 17 18 19 20
6 21 22 23 24
From this you can extract the nth col- - i
umn by specifying the column number ...
... and reformat if necessary. 4
1 A B c D E F J tongth: 1 ¥,
A — T
l 1z E
5
£ length: 1 vJ
l »» E

Much more understandable for the column deter-
mination is the calculation of the transposed matrix, from

which then the nth row is taken: N .- @ of i XA

7 Lists and Related Structures 83

With this knowledge you can already do something.
First of all, we build a block for the scalar product
of two vectors. Of course, we need vectors of dif-

new vector dim ‘n# =3

report map | pick random P to EP

ferent lengths for testing, here with random num-
bers as contents. For this we use the fast
map...over... block.

if | longth | of | a

To calculate the scalar product, we use the multi-
plication block as a hyperblock and add the results || report [ERROR:differentdimensions
using the combine...using... reporter. And be-

. reset timer
cause we want to stay mathematically correct, we

set vi | to new vector dim
check the dimensions of the vectors beforehand. —_———

set v2 | to ' new vector dim @i

The result is a very fast block that gives the meas- =
set rosult |to (vl * (w2

ured multiplication time of 0 seconds for two | — =
set time |to timer

10,000-digit vectors, for example.

If this works so well for vectors, then of course we'll
try our hand at matrix multiplication in the usual —

. . -1 [pick random B to &P over
way. First of all, we have to create matrices. We do | EEELD to

numbers from P to('n x 'm

=2 matrix

that similar to the vectors.

The block for the matrix multiplication checks first :
of course also whether the dimensions are correct. il
Then it uses hyperblocks and higher functions. Be-
cause columns of <list> calculates the transposed

matrix, we can multiply the rows of the first matrix -
combine | - il ‘row x| cc

input names: ' row

A respectively with all rows of the transposed ma-
trix B, i.e. with the columns of B, scalarly. over 8
report [ERAOR wiong dmosions

Again, we can measure the time for larger amounts

of data. If we multiply two 100X100 matrices, then to new @ X @) matrix

it takes 0.1 seconds. set B | to new @ X @ matrix

to (A * (B for matrices

reset timer

set A | to new [P X EIP matrix m

4 B R B c D E
set B | to new X matrix 110 10 1 5 9 3 6
L 2 10 2 1 6 2 8 10
set A'B |to (A * (B for matrices N ° 3
. 4 8 9 _ _

set timo |to timer

4
. 1 1
(time m) 1 60 50 50 40 190
2 45 123 i 122 163
3
4

48 99 33 78 11 |
49 126 42 120 162

7 Lists and Related Structures

84

7.8 Fast Image Manipulation with Precompiled Blocks

Level: high school Materials: Expose flowers

As a last application we want to show how to change and display an im-
age in real time using the pre-compiled map...over... block. As an ex-

ample, we choose a color image in which we want to display only ad-

justable color ranges. This can be used, for example, to identify faces in

an image or, as here, to extract flowers.

In order to be able to react directly to changes, we use two variables

each for the limits of the color ranges: the current value and the last

value. If the current value changes, then the image is recalculated, and

the last value of the color value is adjusted. For the change of the varia-

ble values we use the slider representation of the variables.

At the beginning the "old values" simply get the current values. After
that, the scripts reacted to changes as described, e.g. for the red area.

oldRedMin # redMin

oldRedMax # redMax

redMin > redMax
R 0 redMax |

set redMax

set oldRedMin set oldRedMax

. redMin _

draw new costume

The image is recalculated by checking for each
of the three color channels whether the color
value lies within the selected range. If this is
the case, the color value is accepted, other-
wise it is set to zero. Finally, the current trans-
parency value is appended to the pixel. Note
the small lightning bolt at the top of the map
block. It means that the script is precompiled
inside the block and therefore can be applied
very quickly to all list elements. You can get
this option by selecting it in the context menu
of the block.

help. over B
relabel...

compile

duplicate

delete

add comment

script pic...

resultpic..,

export script

ringify

redMin > redMax
1 redMin |

. redMax

draw new costume

draw new costume

switch to costume
ma|

when h clicked
et size to %

set oldRedMin | to (LD

set oldRedMax to
set oldGreenMin to
set oldGreenMax to
. blueMin |

| blueMax |

switch to costume Flowers

set oldBlueMin

set oldBlueMax

hen item > of (pixel

item @D of (pixel |e

(I el)
__inpnl. names: | pixel

over | pixels | of costume Flowers

redMin m
redMax

greenMin
greenMax m

blueMin m
blueMax

item @K of (pixel -] m
D - am
0

7

Lists and Related Structures 85

7.9 Tasks

10.

11.

Q

2 0 T 9

©® >0 2 0 T Q

Find out about the different sorting methods on the web. Implement some of them like shakersort,
gnomsort, insertion sort, ...

Complete the specified methods in such a way that erroneous entries are intercepted.
Implement matrices differently by structuring the lists used differently.

Learn about the data structure dictionary.
Implement the structure with appropriate access operations.

Implement the data structure stack.
Implement the data structure queue.

Implement a simple binary tree with the operations
new tree

add <element> to <tree>

count elements of <tree>

exists <element> in <tree>?

remove <element> from <tree>

determine the maximum depth of <tree>

balance <tree>

Implement other control structures:

do <script> until <predicate>

while < predicate > do <script>

case <variable> of < [[valuel,scriptl], [value2,script2], [value3,script3], ...] >

Implement recursively using only the elementary recursive operations
the data structures stack and queue.

an operation that deletes the nth element of a list.

an operation that replaces the nth element of a list with a new element.
an operation that returns the nth element of a list as result.

an operation that adds a new element to the end of a list.

Implement common matrix operations using hyperblocks.
Implement a method to increase the contrast of an image using hyperblocks.

Implement a method to convert a color image to a black and white image using a precompiled block.
Implement a method to obtain three color separations in the primary colors using precompiled
blocks.

8 Object-Oriented Programming 86

8 Object-Oriented Programming

OOP methods have also been used so far - because there is hardly any other

way. At this point we want to present the OOP features of Snap! in more de-
tail. We explicitly refer to the Reference-Manual of Snap!, where the meth-
ods are explained compactly. You can find it by clicking on the Snap! symbol

About...
Reference manual

Snap! website
Download source

in the upper left corner.

The blocks that are significant for OOP can be found in the Control and Sens-
ing palettes, but the context menu in the Sprite area should also be noted. The
lower blocks of the Control palette are for "dynamic" management of sprites,

duplicate
the menu for "static". This difference is significant because it is assumed that clone
only the static clones should be permanent, the others are e.g. deleted when delete

saving and not even displayed in the sprite area. parent...

Snap! of course works all the time with objects, which are called sprites here.
They have their own attributes (position, direction, costume, ...) which can be _ o
accessed using different blocks. The my <attribute> - block provides the /" %
whole palette, the <attribute> of <sprite> - block knows the most important

ones and additionally shows the local variables and methods of a sprite.

| e~ . |

. my neighbors costume #

nsighbors position
solf X position
other sprites y position
clones direction
other clones costume #
parts c_ostume name

hor size
anc width
stage height
children left
parent right
temporary? top
nams bolﬁom

- volume
soripts balancs
costume value
costumes "

‘ @ start working
sounds Sl — = .
blocks create a clone o m]
categories
dangling? S et Aleee At m)
- Ll e

dr_aggabl@. - -
widlth delete this clone |
height

Ir?;hl object myself

top

bottom Y neighbors
rotation style .

rotation x costume# | of
rotation y S
center x

centery 12 %

You can get the value of a local variable
(here: the position) of another sprite e.g.

§ length: 2 %)
@ Z
with position | of AnotherSprito y

87

8 Object-Oriented Programming

To select a local method, we put the prototype of wr———
the considered object into the <attribute> of 9 start working
<sprite> block on the right and then select the desired method. The block returns the code of the method,
which can be seen by the gray ring around the method name. We execute this code in the context of a

Yy start working

of Sprite ~

sprite that can do something with the code: usually the prototype, a clone, or a copy of it. This can be done

using different blocks. If you call a local method of a sprite "from
outside", then in my opinion the run block is the most intuitive to
understand, if you ask a sprite to call global methods, then it is
better done by the tell block. The launch block starts a script as

an independent process.

Since a script is inserted into a gray ring, it can of
course consist of several commands, and parame-
ters can also be used, which are inserted into the
empty slots of the blocks, and which can be named
if required. This can be useful, for example, if you
are using multiple parameters and want to make
sure they are inserted in the right places. Since the
parameters are determined outside the called
sprite, they must also (usually) be listed outside the
script under with inputs. If the parameters are not
named, then they are inserted sequentially into
empty slots in the script blocks. In many cases you
can insert parameters directly in global blocks.

Local reporter blocks are handled quite similarly,
but by the corresponding reporter blocks of the
Control palette. Again, the call block is more suita-
ble for local reporters, while the ask block is more
for calling global methods in the context of another
object.

A newer feature of Snap! is
metaprogramming, the
ability to manipulate a script
directly by other scripts. For
example, if we are inter-
ested in the contents of the
get data from drawer <n>
block, then <...> of block
<a block> block will get the
corresponding script. We

definition of block

split definition of block

can convert that into a list
of commands with the split
block.

get data from drawer [

get data from drawer i

tell| Sprito | to| | § start working | of Sprito

run | Q start working

of Sprite

launch| | @ start working | of Spiite

pen down
repeat @
move (width steps

turn) @I degrees input names: | width

tell Spite | to

height
move (height steps
turn :3 &) degrees
=
pen up
with inputs 100}

repeat &
move steps
t.urn d €D degrees
move EIP steps

tell Spiite | to

turn d @ degrees
- =
pen up

call 9 get data from drawer ||

of Spito | |with inputs [l

@ get data from drawer [

ask Sprito | for of Sprite

with inputs &

ask Sprite | for | size

100)

-

definition
label
definition 5
category if number =1
custom? | | report e |
global? B ,
type if number =B
scope illput names: number
sots | |)
defaults if number =f
monus

of Sprite

D
number

of Sprita by

I mom ®m
I 0mm o

8 Object-Oriented Programming 88

To this list we can simply add a copy of a command [==

split | definition | of block 9 get data from drawer [Jj of Spiite by

and change the parameters. The modified list is
blocks ¥

merged with join to form a new script that can be ———————— —
add NLAOE item of (scriptlist to (scriptlist

replace item ER9 of (S item of | scriptlist with [

executed with the call block.

replace item @& of item £59 i item LR of (scriptlist with [ERIE

————— . " iaCle) e e item @ of (scriptlist item @) of (scriptlist
| s set script = =
ca“ | SCr1 Pt W|th |“PUt5 H =g Rl item @K of (scriptlist item @K of (scriptlist

set labol af hinslk to i

Setting code parameters can also be done during the program, and the

block itself can be completely created or deleted. abel
definition
category
repeat circle type
scope
define | block move HEEE repeat slots
defaults
turn ¢ @P degrees move @) steps .
== (aditables

turn ¢ @D degrees
_*

defi block

delete block

Using the clone command from the context menu of a sprite (see above) we can create additional static
clones. These are randomly distributed in the output window. Dynamic cloning also creates new sprites,
but they are all in the same place. If you save the project and reload it, the

statically created clones will be created again, but the dynamically created

ones will not.*

An essential aspect of OOP is inheritance. In Snap! this is based on Lieberman's delegation model*, which
works with prototypes (i.e. concrete objects, not abstract classes) and clones and modifies them if neces-

sary. The model was described earlier. We will illustrate all procedures first with simple examples, then with
more complex ones.

% This is a real benefit: with many clones, it is otherwise often difficult to get rid of them without destroying
the project.

46 Lieberman, Henry: Using Prototypical Objects to Implement Shared Behavior in Object Oriented Systems,
ACM SIGPLAN Notices, Volume 21 Issue 11, Nov. 1986

8 Object-Oriented Programming 89

8.1 Fiona and the Filing Cabinets

I'm Fiona!

Level: high school
Materials: Fiona and the filing cabinets

We draw the costume of an elegant commode and
create a sprite named Cabinet for it. The commode
contains a local list variable content as data storage,
which we represent by this very commode. We equip
it with local access methods to the data by imple-
menting the methods put <data> and get. This re-
sults in a simple queue. We can use it to write arbi-

trary contents to and from the list.

. ' costume g S .
Both methods and the variable are ettt
. ition
indicated by the <attribute> of poste! =
. x pos!t!on add (data to (content
<sprite> block. y position
direction
We want to use two of these data costume #
costume name
stores. For this purpose, we can ei- Sizdeh
. widtl
ther create copies or clones of height
the commode. With copies, later 'r?;m
changes to the prototype are not top
bottom
applied, but with clones they are. volume
An exception are list variables. % report (T
conten
Here, a reference to the list is cop-) else]
ied in both cases, so that changes m rreport nothing

to the list, e.g. insert operations, ‘ =
affect clones and copies. To get independent lists, we need to break this link
after cloning, e.g. by re-setting (set <content> to <list>) or copying (set
<content>to map <> over <list>) the list. We opt for copies here and create
two of them, the sprites Papers and Souvenirs with slightly different cos- == show

tumes. For these we need an access from outside. d UmiCEtE

We get help from the IT officer Fiona. Fiona can see the existing methods on clone
other sprites, but how can she access the data stores? There are several ways delete
to do this in Snap! for commands and reporters respectively.

parent...
export...

8 Object-Oriented Programming 90

Find method of another sprite:

_ |of |

- Select sprite (prototype if necessary) in the right input field: m

- Select method in left input field:

Wpﬁ of Cabinet

The call returns the code of the method: loft

1 top
|—°_P“t . of Cabinet _@] bottom

position

X position

y position
direction
costume #
costume name
size

width

height

right
volume

balance
content

(9 get]

execute local method of another sprite:

Parameters are passed in order in the fields after "with inputs". They are only inserted into the blanks of

the method header on the side of the called object when it is clear which method will be executed at all.

Commands
with tell: Fiona transmits to the addressed object (here: Papers) the method header to be exe-
cuted with the associated parameter values (here: personnel file). The object being ad-
dressed follows tell.
tell m to Wplﬂ: | of GCabinet | Maithiinputs NN e i)
with run: Fiona asks the Papers object to execute the submitted method with the associated pa-
rameter values (here: personnel file). The called object is named in the input window of
the of block.
run | 9 put . of Papers T L personnelfile T 4P
Important: The method is selected first by specifying a suitable prototype or clone as
object. After that the actually meant object is inserted, which can also be stored e.g. in
a variable!
with launch: | like run, except that the script is executed as a separate process, i.e. without waiting.

8 Object-Oriented Programming 91

Reporter
with ask: Since this is a call to a reporter method (a function), a value is returned. Any parameters
are passed as described above. The called object follows ask.
ask Papers |for (@ get | of Cabinet | | REEESERIE
with call: Comparable to run. Here, too, the called object is named as the second input.
call Qget S8 Papors | \wpersonnel file)

If attributes of another sprite are to be changed from the outside, then this

can be achieved as usual via a set method. But it can also be done directly: help

we execute the set <variable> to <value> block in the right context. To do relabel ..
duplicate
delets
add comment

this, it must be wrapped in a gray ring to prevent it from being evaluated as

a parameter even before run is executed. That would be in the wrong con-
ecript pic...

text. The ring is used to pass a block as code (see above), and not its result export script

after execution. ringify

~ |to l |/ of Papers | [withinputs list

This block is to be understood as: "Execute the code that assigns a value to a variable in the context of the
Papers object with the parameter values content and list (1,2,3)".

And of course, we can also call the standard blocks.

tell Fiona | to| move GNP steps

ask Papers | for |/ touching odgo

Fiona as a well-trained IT officer can of course issue such commands, but a normal user probably cannot.
Fiona therefore provides new global blocks, which additionally receive the file cabinet to be used as a pa-

rameter. This simplifies the usage in the whole system very much. Fiona is pleased about the positive feed-
back.

B

‘ store { content i in cabinet /(cabinet name

(get data from cabinet (cabinet name

if - (cabinet name = if < (cabinet name

(=11 8 asle Papers . |for| (@ get’ | of Cabinet ’

if . (cabinet name =

of Cabinet with inputs m <

-l ask | Souvenirs | for (@ get’ | of Cabinet

report

get data from cabinet

store [[ERYI in cabinet

8 Object-Oriented Programming 92

Tasks

1. Implement access control at the filing cabinets themselves or with the IT representative
a: by a password request.
b: with lists of users and assigned passwords.

2. Process the data by
a: introducing plausibility checks.
b: introducing encryption.
c: implementing organizational forms in lists, rows, stacks, queues, trees, etc.

3. Save the data in a suitable way in text files.

4. Organize a "data center" that keeps, secures and organizes the data of a company (a school, a fam-
ily, ...). Define access rights and methods and implement the procedures.

8 Object-Oriented Programming

93

8.2 Magnets

Level: from middle school Materials: Magnets

As a very simple example of how to deal with ob-
jects, we choose a magnetic field whose orienta-
tion near a "north pole" is indicated by "elemen-
tary magnets". The little ones are simply supposed
to point to the north pole.

So, we draw the big magnet without any function-
ality (you can only push it around) and a single
small one. We equip this one with the required
properties and clone it as often as necessary.

Pointing to the big one is simple. If an elementary
magnet receives the message "come on!", it con-
tinuously points to the north pole.

Cloning is a bit more complicated, because we
want to distribute the clones naturally in the image
area, like this: We write the method as a block of
the large magnet. In it we create a clone of the
small magnet and assign it to a local variable. We
then send the clone to the position specified by the
parameter values, rotate it in any direction and let
it appear. Ready.

Dealing with many dynamically created clones is
extremely easy: if we click the red stop button at

9 create ‘n# new little magnets

script variables l'(_new clone

point in direction (pick random & to &P

when h clicked

@ create new little magnets

broadcast comoon! |- and wait J

the top-right of the window, all of them are gone again. And since dynamically created clones are not dis-

played in the sprite area, their scripts are really fast. If you move the big magnet, then all elementary mag-

nets realign themselves - immediately.

Task:

Add a "south pole" to the "north pole" and determine the direction of the force on the elementary magnets

at their locations. Align elementary magnets in this field.

8 Object-Oriented Programming 94

8.3 A Learning Robot*?

Level: high school Materials: Learning robot

As another example of inheritance by delegation, let us consider a robot that has four touch sensors. If one
of them comes into contact with an obstacle, then the robot changes its direction, but also has a new bump.

Using a drawing program, we draw a picture of a world bordered by black walls and in which there are some
black obstacles. For reasons we will learn in a moment, we spray a diffuse red mist around the objects and
along the walls with the spray can. Into this world we place Roby - as a small circular sprite. Further we

draw an even smaller blue sprite, which we endow with a predicate touching

_ ouchin e wal
the wall?, i.e. a touch sensor. We clone this sprite three times and then attach 7

the four sensors to the robot.** We name them TouchSensorN, TouchSen-
SOrE, ... etc. according to the compass directions. The result is an aggregation. We equip the robot with
two local variables vx and vy, which describe its velocity components in these directions. If now a touch
sensor reports a wall, then the corresponding velocity component is changed. We get the following config-
uration, in which Roby moves safely between the obstacles - as said, with many bumps:

‘ of TouchSensorN >

)

if ICIN < @ touching the wall? of TouchSensors | I3

set vy |to (@GP x (vy

47 The example has the walking robot of Prof. Florentin Wérgétter, Bernstein Center for Computational Neuro-
science Gottingen, as a template, described e.g. in http://www.chip.de/news/Schnellster-Roboter-lernt-ber-
gauf-zu-gehen_27892038.html.

48 The next chapter describes how to create aggregations of sprites, i.e. how to pin sprites to others.

8 Object-Oriented Programming 95

Now the red spray paint around the obstacles and walls comes into play.

This is to mark areas where an ultrasonic sensor receives echoes from]
the objects. So, we equip the robot with four ultrasonic sensors that . J
respond to this red paint. We call them USsenorN, ...

The robot should learn that an ultrasonic echo often precedes a collision, and that it is therefore better to
turn back already at this echo. So, we need a mechanism that detects that an echo came before a collision.
One way to achieve this is to have a counter in the ultrasonic sensor that is set to an initial value (here: 100)
when it detects red color (i.e., an echo). This counter is continuously counted down to zero - and, if neces-
sary, increased again beforehand. If this counter has a value greater than zero during a collision, then the
echo has been received shortly beforehand.

The ultrasonic sensor sets a counter to an ini-
tial value. This is then counted down to zero.

The touch sensor triggers. Since the coun-
ter still has a value greater than zero, an
echo was received shortly beforehand.

This constellation initiates a learning step that takes place in a neuron. This neuron has two inputs, which
come from the associated touch sensor or ultrasonic sensor and are each assigned a weight, as well as a
threshold value. The line from the touch sensor has the weight 1. If a signal e.g. of the strength 1 comes
from there, then this is multiplied by the weight 1. The result is greater than the threshold value (here: 0.5)
and the neuron "fires". The weight of the US sensor initially has a value of 0. It is increased whenever the
touch sensor detects that the counter of the associated ultrasonic sensor has a value greater than zero
during a collision. If a sufficient number of such learning steps take place, the product of weight and signal
also exceeds the threshold value of the neuron at the US sensor, and this also fires in this case.

the neuron
"fires".

Puls from

US sensor amplification factors

per input

[pulse from touch sensor I
g I 0.5

We now realize this form of Pavlovian learning.

8 Object-Oriented Programming 96

The ultrasonic sensor works exactly as described above. The local
attribute counter can be accessed directly with the <attribute> of = /i =/} clicked
<object> block. So, the actual changes take place in the touch sen-

set counier | to m

sors and the four associated neurons. Since these are clones of the
forever

only prototype in each case, it is almost sufficient to make the ad-

i ?
ditions only in this one. The clones adopt them because they inherit) 9 an echo is heard?
the methods of the prototype. However, we must still indicate af- ‘ set counter | to

terwards, to which element of the four groups the sprite is to react.

When touching a wall, we still have to determine whether the asso- if - (counter > [{

. . . "ne " -~
ciated ultrasonic sensor triggered "just before". In the clones, we ‘ change counter | by 1)
then overwrite the inherited "pale" method by adjusting the asso- S

ciated sensor. Thus, the paleness also disappears. Before we have
cloned the ultrasonic sensor and the neuron three times and added

the four new purple ultrasonic sensors and the yellow neurons to
Roby. He looks like this now:

I —_—
|° increase weight

if < ‘weight <

=
‘ change weight | by
£ touching the wall? -

if "< counter | of USsensorS =S and © color is touching

Tl | 9 increase weight of NeuronS »

report © color is touching ?

The neuron still needs a predicate | L

is firing? that works as described 70
above rcall @ touching the wall? of TouchSensorN or

<’ (weight > ci:M call < Q an echo is heard? of USsensorN

Finally, we change the behavior of Roby: he changes his direc- =7 M8 cier
tion when the corresponding neuron fires. set vx | to (pick random @& to &

set vy | to { pick random @3 to &

forever

i# call < Q is firing? of NeuronN

‘setvy .to"‘.x vy

i@ calll < Q is firing? of NeuronS

‘setvy (o @B x vy

il calll < Q is firing? of NeuronE

J

)

change x by (wx
B

change y by vy

8 Object-Oriented Programming 97

Roby is now looking for his way, initially be-
tween the obstacles, then along the "echo

area". He has become really smart!

Qo 90 090 09 00 0, O 0.@.0.0.0

Roby TouchSe TouchSai TouchSe: TouchSe: USeensoi USsensor USsensor USsensor NewronN NeuwronS NeuromW Neuron

Tasks

1. Give the program an interface that makes it easy to change the essential factors: the speed, the
weights, the thresholds.

2. Introduce additional sensor types as well as additional events in addition to collisions.
a: Let Roby find correlations between sensor values and events in different "worlds". Roby adapts to
its environment this way.
b: Discuss other ways that Roby is adapting to a changing environment.

3. Discuss the need for "forgetting" as well as ways to make this process happen.

4, Replace Roby with a mouse with a cheese sensor. Put them in a labyrinth. There she should search
for the cheese.

8 Object-Oriented Programming 98

8.4 A Digital Simulator

Level: high school Materials: Digital simulator

R & & dgoal simulat L

> 7
IQIQIGVO Or v
LALAI-ALALALALAIZ .
- rQ |O|Q|Q
= el T b
o e

A digital simulator is a program that can be used to simulate digital circuits. It consists of switches, LEDs
and gates, in this case only NANDs (Not AND), from which all other circuits can be built. On the components
sit different kinds of sockets, with whose help signals are passed on. We can show the connections clearly
in a (simplified) UML diagram. The inheritance is done in this case via delegation.

Sprite
LED Schalter Buchse %) Gatter mit zwei Eingangen und einem Ausgang
1 1 /] b\ / T\
Eingang —! Ausgang NAND XOR

Sockets and Connections

As the "mother of all sockets" we draw a neutral socket, |- i e i ’

which serves as a prototype for input and output sockets. All

sockets have a value, which can be 0 or 1. Inputs get their
value from the connected cable, or they get the value 1 for
technical reasons if they are not connected. Outputs get their
value from the component on which they are located. So, they

represent the result of a logical circuit. All sockets inherit from STt o st e

the neutral socket the method show yourself, which repre- else
sents their value in color, as well as the local variable value. | switch to costume noulral

J
)

8 Object-Oriented Programming 99

Using the context menu (clone), we create two clones of the neutral socket, which serve as prototypes for
inputs and outputs in the following.

Sockets are to be connected by first clicking an output and then an input. If only the input is clicked, then
its connection to an output is deleted - if it exists. Connections are displayed only rudimentarily as lines on
the stage. If you move the switching elements afterwards, the lines remain "free in space"*. Inputs can at
most be connected with an output. For this they get an additional variable connection. Outputs can dis-
tribute their values to several inputs; therefore, they receive a list variable connections, in which the con-
nected inputs are entered or removed. If an output is clicked, then the global variable theOutput receives
this output as value. If an input is clicked, then it provides for the update of the connections.

when I am clicked

set thelnput | to' my self

if not { connection = -
Delete the
old
connection
logically
and

graphically /7
x'position | of (connection

theOutput = A d

=~ . TR — If an output
‘ set connection ‘ (i) theOutput has been
— - selact
| 9 draw line from @ @ to @ @ with color @ | of Pen ~
= ... enter this
with inputs m x'position | of (theOutput output as

o I connection
y-positi of (theOutput . JIRIC and have it

——— . drawn... 7
TLE | 9 new connection > of (theOutput® EYLORLIS m s

else

—
‘ set connection ‘ to v

< ... otherwise mark
set theOulput | to the connection as

empty. A

set thelnput | to

.

Q operate

Outputs have it somewhat easier: they provide the capabilities to add ~ =~ s

and remove connections - and wait what comes.

if - (theOutput =

o —
‘set theOuiput | o ' my self

‘ 9 delete : connection ;;lse
script variables | set thoOutput ‘ to
set i |to

repeat until * i o> length | of (connections

Q operate

>

of (connections = (input Q9 cti
new connection

delete (i = of (connections

édd (input to (connections

set connections | to ' remove duplicates from (connections

4 The representation and especially the distribution of lines is an independent problem.

8 Object-Oriented Programming

100

Switches

Switches are used to change input values. We create two costumes representing
the open and closed state respectively. The left end of the switch we leave open,
it symbolizes the connection to the ground and thus has the fixed value 0. To the
right end we add an output socket, which gets either the value 1 (state "open")
or O (state "closed"). We get the new socket by cloning the output socket. Then
we move the obtained sprite to the right place at the switch.

There it must now be anchored. To do this, we move the sprite symbol of the
output from the sprite area over the switch in the output window. Its outline lights
up when it realizes that it is meant. This attaches the socket to the switch: it is the
anchor of the resulting aggregation.

So, an aggregation of sprites is created by first dragging the elements on the stage
to the right places and then dragging the sprite symbols from the sprite coral onto
the anchor element. The attached sprites (here: the socket) become elements of
the parts list of the anchor (here: the switch) and are displayed at the sprite sym-
bol of the anchor. With detach from ... from the context menu of the attached
sprites they can be detached from the anchor again.

Since we want to operate the components of our digital simulator by mouse, it
makes sense that the switch reacts to mouse clicks. This is easy to achieve: with
every click he changes his costume. To do this, he must know what he looks like at
the moment: with <costume-name> of <myself> he gets the current costume.

We still need a mechanism to control the reac-
tions of the parts, in this case the output bk i I
socket. Since it should be transferable, the

method must be generally usable. So, we equip
each part with an operate method and a vari-
able value. If the state of the switch changes, alse
then the switch changes its value. Finally, it
calls the operate method of the output - which

— o

.

Output

2e

Sockst Input Output

o -

Switch

is the only element of its parts list here. We use
the launch block to not let the program execu-

"'r-my parts

tion wait.

8 Object-Oriented Programming 101

Gates

To create gates, we first introduce a prototype Gate that has two inputs and one
output. Furthermore, it contains a variable switching time. We add the necessary
sockets as we learned with the switches. From this gate we can derive other gates
like AND, OR, XOR or NAND. For the NAND we create a clone of the gate called NAND
and give it a customized costume.

bl S ¢

The prototypes derived from the gate inherit the gate's operate method and the in-
stance variable value. Both are actually useless, of course, since the gate has no real :_}'.
function at all. We therefore leave the method empty and overwrite it in the derived ._

prototypes. (If we forgot something, we can also create variables and methods in the
prototype afterwards. These are inherited to the clones immediately). Inherited variables appear slightly
lighter in clones than own ones. If they are overwritten, then the changed elements get the normal color.

The operate method of the NAND is simple to
write. The my <parts> block shows us the inputs
and outputs of the NAND. We can read their values =i X EITITGTITED)

or set them as we did with the switch. We use the .
/ value | of | item @B of (my paris
if .

launch- instead of the run-block again.

T
| set value \ to
-

——
| set value | to
L —

— :
launch | § operate of | item &R of (my parts

The Pen

The pen provides only a simple method of

Q@ draw line ;from (€ € ""yz# with color

drawing straight lines in different colors on s

the stage. It has no other tasks.

.
set pen color to i
=

set pen size to @

set pen color to
h—

set pen size to
Syt

go to x: (x1 y:

ﬁen down

go to x: (x2 y: (

8 Object-Oriented Programming 102

LEDs

As a very simple example of adding new components to
the system, we introduce the prototype of an LED (light
emitting diode). This is given two costumes for the values ¥ o | of (item GBS of (my pars

0 and 1 as well as an input. Since this one knows the sys-
. L itch
tem well, the LED can fully rely on it and limit itself to what sl b Tl

else

LEDs do - glow. There is nothing more to do. B 350

The Interaction of Components

The activity is supposed to wavelike pass our switching network in a feed-forward manner: Each compo-
nent notifies the connected parts and calls their operate method when something has changed. If, for ex-
ample, an output socket sits on a switch, then the switch calls the operate method of the output if it was
clicked and therefore changed its value. This in turn activates all connected inputs. Each of these inputs
calls the operate method of the gate it sits on - but only if its value has changed. If not, the wave is stopped
here. So far, the gate can only be a NAND. This waits for its switching time, reads the values of its inputs,
and activates the output - and so on.

The operate methods of input and output serve as examples.

P

Q operate

‘91 operate

~ o
script variables (i

~

* =
script variables (oldvalue

Set oldvaluo | to KLY

if (connection =

—_— r—
‘set value | to ‘set value . [to | value | of (11

¥ (value =

— ——
‘ set value |to' value | of (connection
-

I set value |to m

else
| set valuo | to n

Q show yourself

@ show yourself

launch \bioperate il my

repeat until * S length | of (connections

(B0 | @ operate | of (item (i = of (connections

change i | by &P

8 Object-Oriented Programming 103

Tasks
1. Create prototypes for the following gates based on the NAND model.:
a: an AND b: anOR
c: an XOR d: a NOT-OR (NOR)
2. Create a prototype for NOT gates, which have only one input and one output.
3. Create a prototype for a clock generator. The clock frequency is to be adjustable.
4. Create a prototype for RS-FlipFlops (RS-FF). Inform yourself about their mode of operation before-
hand.
5. Create a prototype for JK-master-slave-flip-flops (JK-FF). Find out about how they work beforehand.
6. Our gates react after a switching time, which can be different. Why actually?
7. Develop an interface with buttons, selection boxes, ... for the digital simulator, with the help of

which components can be created and deleted, elements can be selected, the simulation can be
started and stopped again, ...

9 Graphics

104

9 Graphics

9.1 Line Graphics with Koch- and Hilbert Curve

Level: from middle school Materials: Snowflake, Hilbert curve

In Snap! each sprite has a (virtual) pencil to draw on the stage. The functional-
ity corresponds to the well-known Turtle graphics®. The blocks for this can be
found in the two palettes Pen and Motion. In the first one the pen is controlled,
i.e. raised or lowered, pen color and width are set, ... In the second one the
commands for moving the sprite are found. During this movement, the pen
leaves "traces" depending on its state, which then form the generated line
graphics - and which can also be further processed as pen trails. Note that the
pen is located in the rotation center of the current costume of the sprite. You
can move this in the costume editor using the crosshair tool.

pen down

move P steps
i
turn (3 degrees

Brush siza:

Conatrsin proportions of shapes?
(you tan sisa hele sty

If we choose the already known pen as costume,

go to x: €D v: @
|

clear
»

then the adjacent script creates a simple circle.

, pen down

\ repeat
move P steps
turn O degrees
>

>

The example is a good way to demonstrate the effect of the warp block. While
without it the pen draws the circle quite comfortably, the finished circle with
warp block appears practically immediately. The reason is that in the first case
the state of the system is shown anew after each block execution, while in the
second case this happens only in larger intervals. The difference is "dramatic".

50 https://de.wikipedia.org/wiki/Turtle-Grafik

pen down

pen down?

set pen color to

I

change pen hue by

set pen hue to

(=}

change pen size by

set pen size to P

write size @B

paste on

move steps
turn degrees
turn & degrees

+ o

point in direction

point towards mouse-pointer

go to x: @D v: @
go to randomrposition

glide secs to x: @ v: @

change x by

set x to

change y by

sety to

if on edge, bounce

9 Graphics 105

A similar acceleration can be achieved using the Turbo mode option in ¥ Untitled
the settings menu. However, this applies to the entire program execution @ Language...
and not only to a selected area. Zoom blocks....
Fade blocks. .
With the help of the Turtle graphics, some of the well-known recursive Stage size...

Microphone resolution...
O JavaScript extensions

curves can be drawn very elegantly. We start with the snowflake- (or

Koch-) curve. It is created by repeatedly "bulging out" triangles in the O Extension blocks
. O Input sliders

center of the sides of a triangle until the sides become too short for this w7 Turbo mode

process. In this case, the sides are drawn only as straight lines. A snowflake 0 Visible stepping

M1 a0 nen vectors

is created by assembling an equilateral "triangle" from three such sides.

Draw a snowflake side of length n

n<2
true false
Draw a line of length n Draw a snowflake side of the length n/3
Turn by -60°

Draw a snowflake side of the length n/3

Turn by 120°

Draw a snowflake side of the length n/3

Turn by -60°

The procedure can be translated directly to Snap!

draw snowflake side

draw snowflake n # = 100

warp

clear
| hide
pen down

move n steps

draw snowflake side
repeat

draw snowflake side n

-
turn (3 degrees
=

|2
turn t) @D degrees
.

draw snowflake side

13
turn O, degrees
(3

draw snowflake side

turn t) @D degrees

draw snowflake side

(s

9 Graphics

106

For the construction of the Hilbert curve, we use a version after LiszI6 Bészérményi°L. It is
one of the area-filling curves, which has a kind of box as generator. The corners of the box lie
in the centers of the four quadrants of a square. In the next stage, this box is reduced by half,

and four versions of it are rearranged in mirrored or rotated versions in the quad-

rants. Finally, the smaller boxes are connected to each other as shown.

In Boszoérményi's version, the boxes are marked A to D according to orientation and

direction of rotation.

Ai: — Bi: Cil H; Di:

v —>

The Hilbert curve is composed of these elements by starting with A and calling the

other elements "twisted". The parameter i indicates the recursion depth and thus

the size of the elements. It is "counted down" to zero.

The call is made as de-

i scribed, after the sprite

~ 0,
set size to w2 has been sent to the

starting point right-up.
RN 160 NN 170
A ¥ The final length of the
set rocursion'depth to B

; sections to be drawn is

set length to ENQ
; cogl determined from the

repeat recursion depth .
= = recursion depth - and

set lngth to length / @D then drawing takes
place. Again, the effect

_pen down of the warp block is
hide

,
. recursion depth
,

show

drastic.

51 http://bscwpub-itec.uni-klu.ac.at/pub/bscw.cgi/d11952/10.%20Rekursive%20Algorithmen.pdf

http://bscwpub-itec.uni-klu.ac.at/pub/bscw.cgi/d11952/

9 Graphics 107

9.2 The RGB Color Cube

Level: from middle school Materials: Color cube on stage

Encouraged by this success, we will next try to create the familiar 1 m
color cube of the RGB color space>? ourselves. To do this, of 2“’
course, we need to be able to set the RGB colors for the pen. We 3“'
find ways to do this in the Pen palette. First, let's see how it rep- 4@'

RGBA 4 length: 4 Y,
pen -

set pen RGB(A) to list 0fo]

resents RGB(A) colors. We already know that!

In the same way we can set the pen color as well.

Alright: We enlarge the stage to the dimensions 500 x 500 pixels

by changing the corresponding entries in the Settings menu. Then

we draw. Eiage width Stags neight
500} 500

First of all, the front side of the color cube.
OK Default Cancel

draw front side

script variables r

set b to[]]
L

setr to ﬂ
>repeat
set g to[q
:pen up
go to x: y: &P + r
h

pen down
L

repeat 255

set pen RGB(A) to list 'r

;

move @ steps

(2

change g by o
*

draw right side
change r by @P

— script variables r

Then the right

set g to
side. [

setr to[]

|

repeat
set b to[]
L

repeat 255

set pen RGB(A) to list 'r g

b

s

| pen up

b

pen down

g

move @P steps

S

change b by &P
-l

change r by @P
_

52 https://de.wikipedia.org/wiki/RGB-Farbraum

9 Graphics

108

And finally, the top on it.

draw top side

script variables r

warp

set r to Pl

S

set b to [i

-
repeat
set g tofi]
|2
pen up
»

go to x: | @D + (b VIED

»

pen down
[#

repeat 255

set pen RGB(A) to list 'r

>

move @ steps

(2

change g by @D
)

change b by
=

This results in the total RGB color space.

draw front side

draw right side

draw top side

9 Graphics 109

9.3 Printing and Cutting Costumes
The pens of the sprites draw on the stage, but pixel graphics are
also possible on costumes of sprites. With the help of the pen
trails block, the current state of the stage can be transferred into a costume, .

.)) paste on Sprite
which can also be "printed" back onto the stage if necessary. The paste on

block prints the current costume of a sprite either onto the stage or onto a

cut from Siage
selected other sprite, as far as it overlaps with it. The block cut from cuts the ag

area of the own costume out of the costume of the specified sprite.

As an example, we first create a "scribble" on the stage.

switch to costume Turile

go to x: @ y: @

point in direction B

pen down

(= =1 1000

move | pick random @ to steps

turn (j pick random to degrees

switch to costume Yesllowblock

Next, we give the sprite a yellow rectangle as a costume and send
P WeE priteay & go to x: @D y: @
it back to the center.

point in direction %

We create a second sprite and give it the costume of the pen
trails. Then we cut this costume out of the yellow block. switch to costume pen trails

Finally, we want to draw an ellipsoid on the yellow block. We give ~ Ralla i1 BT CY
the second sprite an appropriate costume and "paste" it onto the
yellow block.

switch to costume Red'ellipse

go to x: @D y: @

paste on Spritel

9 Graphics 110

9.4 Drawing on Costumes - with an own JavaScript Library

Level: high school Materials: Color cube on costume

Snap! is originally based on the HSV color model®3, similar to Scratch.>* But | prefer the RGB model®®,
because it corresponds directly to the color sensors in the human eye and many technical applications. But

maybe also out of habit. Meanwhile Snap! supports both HSV and RGB representations of colors in
the blocks.

Using the <property> of costume <costume> block, we get access to @i
the properties of a costume, such as its dimensions and its pixels. As an

of ~castume current

example, let's take our pen. Let's take a closer look at its pixels.

7200 A B C D
141 0 0 0 0
142 0 0 0 0
143 0 0 0 0
14 o 0 0 0
145 73 72 70 255
146 110 99 40 255
147 175 162 23 255
148 240 207 22 255
140 nan an7 o0 NER

We get a list that contains as elements :
switch to costume Pen

4-element lists with the three RGB val- [Elie e = Tne

[T

ues of the pixels as well as their trans- N pr—
parency (alpha) values. All values
come from the range 0...255, so each
can be represented by a byte. For
transparency °®, the value 0 means
that the pixel is "invisible", and 255
means that it should be drawn with SR T o
full colors. With the help of this pixel

list, we now want to recolor the pen.

input names: pixel

We therefore swap the blue values
with the red values, but only if the
pixel is "quite blue".

There we go!

53 https://de.wikipedia.org/wiki/HSV-Farbraum

54 In the libraries of Snap! you can find more color models.
55 https://de.wikipedia.org/wiki/RGB-Farbraum

%6 3ctually better: visibility

9 Graphics 111

Drawing on costumes has, among other things, the advantage that JavaScript commands related to this
area can be used without knowledge of and consideration for the rest of the Snap!. Thus, if necessary, one
has a small playground where parts within the graphical language Snap! can be written in the text-based
language JavaScript.>’ As an example we create the color cube again, but this time on a sprite costume.

First of all, we need a costume: faint

. . create costume of x# =480 x y# =360 pixel
yellow and sufficiently large. We set

script variables pixels

the stage to 600x600 pixels and write
a fast block for it.

report
map | report | list

new costume
1) X %y

height 'y

After creating the appropriate varia- R T x pixel

bles, we found the beginning of our
switch to costume ' costume

script like this.

We can now manipulate the pixels of
. P ’ setRGB & ED €D at €D €D on >
this costume. For this we write two
small JavaScript methods to read @I NT D 8 1 X 1)

and set the color of a pixel respec-

tively.

setRGB 'r # = 255 g # = 180 b# =100 at x#=1 vy#=1

on costume

JavaScript function ([I A M) {
ctx = costume.contents.getContext('2d');
ctx.beginPath();

ctx.lineWidth = 1;

ctx.strokeStyle = new Color(r,g,b).toString();
ctx.moveTo(x,y);

ctx.lineTo(x+1,y);

.closePath();
.stroke();

withinputs r g b x

getRGB from (costume > at x#=1 y#=1

report

JavaScript function (v) {
var ctx = costume.contents.getContext('2d");
data = ctx.getImageData(x,y,1,1);
return new List(new Array(data.data[@], data.data[l], data.data[2]));

with inputs (=505

57 If you want to. Snap! is now fast enough that such extensions can usually be dispensed with.

9 Graphics 112

With these two methods we can now create the RGB color cube again, after we have allowed the use of
JavaScript in the Settings menu.

draw top side on costume draw right side on costume

script variables r g b script variables r g b

warp

set r . to B setg to
L

set b to E]
L
repeat

setr to[
b

set b to m
[3

repeat

set g to[)
\

repeat 255

setRGB'r ‘g b at EFP + (b
500 r - (b on costume

repeat 255

setRGB r g ‘b at g
-(b on costume
X

change g by
=

8

change r by
-

change b by
=

change b by @ i
9 y . switch to costume costume

L =
switch to costume 'costume

draw front side on
script variables r
set b tofi)
,
set ¢ tofi]
(3

repeat

set r to E
[

repeat 255

setRGB 'r g b at + g on costume

b

change r by
-

change g by
L =

With this we can have the color cube switch to costume (CHSTINE

drawn again.

set costume to create costume of x pixel

switch to costume costume
draw front side on costume
draw right side on costume

draw top side on costume

9 Graphics 113

While we're at it, we might as well implement some more of the common graphics operations in
JavaScript.

draw line from xa# =1 ya#=1 to xe# =100 ye # = 100
color 'r # = 255 g # =128 b # =100 on costume width

width # = 1

JavaScript function (I} [9 3 [A B)1
ctx = costume.contents.getContext('2d');
ctx.beginPath();

ctx.lineWidth = width;

ctx.strokeStyle = new Color(r,g,b).toString();
ctx.moveTo(xa,ya);

ctx.lineTo(xe,ye);

.closePath();
.stroke();

withinputs xa ya xe ' ye !r | g b | costume width

draw rect between xa# =1 va#=1 and xe # = 100
=100 color 'r # = 255 g# =128 b# =100 on
width ‘width # = 1

JavaScript function (BRI A AR R){

ctx = costume.contents.getContext('2d');
ctx.beginPath();

ctx.linelWidth = width;

ctx.strokeStyle = new Color(r,g,b).toString();
ctx.strokeRect(xa,ya,xe-xa,ye-ya);
.closePath();

.stroke();

withinputs xa ya / xe ye 'r | g b costume | width

fill rect between xa # =1 va#=1 and xe # = 100
ye # =100 color 'r # = 255 g # =128 b# =100 on

costume

JavaScript function (yal yolir Hollb))} {
ctx = costume.contents.getContext('2d');
ctx.beginPath();

ctx.fillStyle = new Color(r,g,b).toString();
ctx.fillRect(xa,ya,xe-xa,ye-ya);
.closePath();

.stroke();

withinputs xa ' ya xe ye r | g

9 Graphics

114

x # = 100

radius

draw circle

radius # =50 on

costume

y # = 100

color r # = 128 b # = 100 width

g # = 100

width = 1

JavaScript function ([[gllb)

fill

JavaScript function (] [} gl b

ctx.
ctx.
ctx.
ctx.
.closePath();
.stroke();

with inputs x

circle

ctx.
ctx.
ctx.
ctx.

){
ctx = costume.contents.getContext('2d');
beginPath();

lineWidth = width;

strokeStyle = new Color(r,g,b).toString();
arc(x,y,radius,@,6.283185307179586476925286766559);

y radius | costume 'r | g

radius # = 50
b# =0

x # = 100 y # = 100 radius

color r # = 255 g#=0

) {
ctx = costume.contents.getContext('2d');
beginPath();

fillstyle = new Color(r,g,b).toString();
arc(x,y,radius,®,6.283185307179586476925286766559);
fi11();

.closePath();
.stroke();

with inputs x vy

radius | costume r
We save these blocks in a separate library (File 2>
Export blocks...), selecting beforehand which blocks
should be included in it. We rename the file saved
in the download directory, e.g. to MyOwnDraw-
ingLibrary.xml and move it to a suitable location.
From there we can load the blocks into other pro-
jects via File =2 Import... and use them - just like any

other library.

Export blocks

7 getRGB from > at @D €D

4 setrRGE @D €D EDD at €D €D on >

, draw line from o o to color
[1)

, draw rect between o o and m color @
width &P

1 fill rect between n o and m (LI 255
M draw circle m radius on > color @E]
M fill circle radius on >» color

draw front side on >
create costume of x pixel

draw top side on >
=]

OK Cancel

9 Graphics

115

9.5 Drip Painting

Level: high school Materials: Drip painting

One of the methods of bringing randomness into artistic design in modern painting is to splash blobs of

paint on the canvas with a brush. The impinging drops of paint are further divided on impact, resulting in a

random pattern. We want to simulate this process, drip painting - and that's not so easy.

We try a simple but computationally very expensive approach: Within a rectangle, n random circular spots

with slightly different colors are created, which become more transparent towards the edges of the rectan-

gle. Eventually, the color thickness decreases there. Since n is in the order of 100 and we want to distribute

a few thousand drops per image, we transfer the drop drawing to a JavaScript function that can do some-

thing like this very fast.

drop xa # va # br # ho # nl color

costume >> nl with n# particles

run

JavaScript function (va gl b n|

var ctx = costume.contents.getContext('2d');
var radius = Math.min(br,ho)/4;

var xm = xa + br/2;

var ym = ya + ho/2;

for(i=e; i < n; i++)

{
ctx.beginPath();
X = xa+Math.random()*br;
y = ya+Math.random()*ho;
dist = Math.sqrt((x-xm)*(x-xm)+(y-ym)*(y-ym));
if(dist<radius) crad = Math.random()*radius;
else crad = Math.random()*5*radius/dist;

r# qg# b #

) {

ctx.fillStyle = new Color(r+50-108*Math.random(),g+5@-18@*Math.random(),b+56-180*Math.random()).toString();

ctx.strokeStyle = ctx.fillStyle;
alpha = 1 - Math.sqrt((x-xa)/br);
if(alpha < ©.81) alpha = 8.81;
ctx.globalAlpha = alpha;
ctx.arc(x,y,Math.abs(crad),8,2*Math.PI);
ctx.fill();
ctx.closePath()

}

ctx.stroke();

>
withinputs xa _'ya br ho r | g

As parameters we pass the coordinates of the upper-left -

corner in the also passed costume, the width and height of
the rectangle circumscribing the drop, the three RGB color
values and the number of "partial drops". In the function (as
known by now) the 2D graphic context is determined and a
radius for the core area of the drop is calculated. Then the
coordinates of the image center are determined, and n par-
tial drops are drawn, whose positions, radii, colors and
transparency are chosen randomly. A strongly enlarged

"drop" looks then e.g. like this:

9 Graphics

116

Of these drops we now distribute a few thousand
on the canvas - and get an optimistic abstract
Spring Picture.

set costume to pen trails
gotox: @ y: @

switch to costume costume

pick random &P to [height of costume ‘costume [0

pick random @i to pick random [P to €D
color pick random (@D to pick random @ to
pick random o to on costume
with pick random o to particles

switch to costume costume

But of course, we can also make the color distribu-
tion dependent on the position - and get
Some Red and a lot of Blue.

With some green to it: Untitled 37.

And of course, you can become more courageous:
Balancing Act

9 Graphics

117

9.6 Edge Detection

Level: high school Materials: Edge detection

In order to recognize objects in an image, it
is often helpful to highlight the boundaries of
these objects - the edges. One way to do
this is to 1) convert to a grayscale image, 2)
use a threshold to convert to a black and
white image, and 3) detect edges in that
black and white image. The first two steps
can be done relatively fast in Snap! using the
map...over function, the third requires a lot
of computation, so there are plenty of op-
portunities for coffee breaks. Or, after devel-
oping the procedure in Snap!, we transfer
this task to a JavaScript function. Edge de-
tection is a precursor to object detection.
The recognition of the license plate of a mo-
tor vehicle on a video image can serve as an
example.

We get an image that has edges that are
clearly visible and load it as our sprite's cos-
tume. Next, we switch to a copy of the cos-
tume to preserve the original. We determine
the width, height, and the pixel list of the im-
age with the block provided for this purpose
from the LOOKS palette.

This image is to be converted into a grayscale
image. We can achieve this step by step by
processing the individual pixels - a typical
task for the map...over function, here using
the precompiled version. This needs a script
that can apply it to the individual list items.
It calculates the average gray value of the
three RGB values and assigns it to the three
color channels. It leaves the transparency
value unchanged.

switch to costume house

switch to costume

new costume NIVEIERAN R T AT | width

| width | of costume current [=He) 118 height | of costume current

Ve s - k0 I
P R R AN KA
AP S S A
QRS B ALy
D A R A P SN
.“l,.l,l€¢‘ b e 3

script variables (gray

switch to costume
map

f
set gray |to

enorl: Jist (gray (aray

input names: { pxi

over | pixels | of costume current

9 Graphics

118

A black and white image is to be created
from the grayscale image. To do this, we
specify a threshold value. All gray values
greater than the threshold are set to full
white, the others to black. Also, for this we
write a function that is run by map...over.

In the black and white image, some repair
work should still be done: individual isolated
points should be deleted, line gaps should be
closed, and so on. (see Tasks). We will do
without that here.

The last step is to find the edges in the black
and white image. To do this, we examine the
surroundings of each pixel. If all points have
the same color as the pixel, then this pixel is
located in an area and is drawn white. If at
least one differently colored pixel is found,
then we have found an edge pixel and color
it black. Since changes in pixel values affect
the neighborhood, the changes are made in
a list copiedPixels.

First of all, we need to have access to the in-
dividual pixels via their coordinates in the im-
age. We could use the JavaScript graphics
library developed earlier for this, but we
want to create two new blocks for it here.
We will use them in a block edge detection.

script variables (threshold
to

switch to costume
% ma

it item @K of (pxl

Fepor‘t

set threshold

> (threshold

2550255255 item (4~ of (711

input names: (pxl

report (I Litem (- o1 0]

over | pixols | of costume current

replace item

v = @ P ion ot contume oo | 1% 03] of

(pxls with (pxI

at (xz=1 f/y #=1

(v = @ L o of costume st 1) #

getRGB from (pxls :

of@

9 Graphics 119

——

edge ' detection

script variables .
(pixels (valuel

—~—
‘set pixels | to ! pixels | of costume current

[_s:t copiedPixels | to ' map (over { pixels

[_s:t width | to ' width | of costume curmrent .

Fs:t height | t@ ' height | of costume current m"‘ = s : ::-'.-?:'.;:':::‘ : ':' :
= e : A
py p—E L
repeat until © (x > (width :
.2 .

v

pixels at"; yp

‘ set difforont | to ¢ true @

change yp | by &B
change xp | by G
—
if ' different
setRGB list [i] [i] @ at (x (y in (copiedPixels
g =
else

setRGB (Tist (x (y in (copiedPixels
mange y | by €D
change g by o

~ B
(switch to costume (copiedPixels

In edge detection we have very traditionally examined the environments of all points, which takes a corre-
spondingly long time. However, we can just as well examine the pixel list sequentially, taking into account
that we find the neighbors of a pixel partly next to the pixel itself, partly shifted "to the left" or "to the right"
by one image width. The sequential run allows us to use the map...over block in the precompiled version.
Let's see if this is worth the effort. For the sake of brevity, we won't check here if we have an edge pixel.
So, we treat the image as a torus.

9 Graphics 120

~

edge detection 2

script variables (pixels (copiedPixels value (length (width /i

sbet pixels | to ' pixels | of costume current
set width | to' width | of costume current
set length | to ' length | of (pixels

set copiedPixels | to

set value |to item @K of (pixel

: = Examine the three pixels in the center.
set i |to/’index - &P

e

repeat until

if (value '# item @B of (L)1)il pixels If a color difference was found, return a black

report (3o oo pixel.

change i

Now the one in the upper row above the

e > (Gnaex - (wio pixel under consideration, ...

if (value #!item @B of (1110)7 piersV
report ({530 o Jo J§255|

[change i

... and then the three below.

if (value = item @B of (.0 i |} pixels

report £E130 8o Ho §255!

change i | by &B

\report list FE3 If no differences were found, return a white

input names: | pixel index pixel.
pixels

switch to costume (copiedPixels

We get - with small deviations at the edges -
the same image as before. However, this

time the processing took only half as long. o~
."W"n wﬁ

SN SRR ™
3 - - -, ':f -',"
> -'--'\n“uh k:":"}:: ':. e i

9 Graphics 121
9.7 Tasks
1. a: Find out about the C-curve on the Internet.
b: Try some steps to construct the curve "by hand".
¢: Implement a script to draw the curve in Snap.
d: Proceed accordingly for the Dragon curve, the Peano curve and the Sierpinski curve.
2. Display the RGB cube from another point of view so that the three previously hidden sides become
visible.
3. If you want to try your hand at JavaScript: create color gradients and, if necessary, the RGB color
cube in a JavaScript function.
4. Change the color values iteratively, i.e. without the map function, by accessing the individual pixels.
Measure the execution times for the different methods.
5. Some painters apply the colors with a spatula. Create "spatula pictures" that "spill out" in one di-
rection and can contain multiple colors. Create random pictures from them.
6. a: Delete individual isolated pixels in black and white images.
If you delete all edge points in black and white images ("melt off" the edges) and then add points
to all edge points again - or vice versa, then you can delete single pixels, close gaps in lines, etc. by
alternately and possibly repeatedly applying the procedures. Implement the procedures and test
them.
7. If you want to program something in JavaScript:
a: Implement the conversion of grayscale images to black and white images as a JavaScript function.
The threshold value is to be given by a variable in slider representation.
b: Implement edge detection as a JavaScript function.
8. Extrasolar planets are usually discovered when they darken their sun

a bit as they pass between their star and Earth. Get an image of the
Sun and make a black circle, the planet, pass in front of the Sun. Count
the number of bright pixels visible in each case and plot the results of
the planetary transit on a graph.

10 Image Recognition 122

10 Image Recognition

The following three examples represent a sequence in which, with increasing difficulty, some possibilities
of Snap! in image processing are shown. Problems were chosen that provide access to the current discus-
sion of digital media and are thus relevant to the field of computer science and society.

10.1 A Barcode Scanner?? The ,Laser”

Level: from middle school Materials: Barcode reader e
We want to analyze a barcode, as used on the labels of goods
in a supermarket, with the help of a "laser" (a red dot) and
convert it into a string of characters. First of all, let's have a
look at the planned setup. We should not miss the very small

red dot on the left side of the working area - this is the "la- 1234 " 5670
ser"!

What is EAN code?

The European Article Number (EAN) code comes in different variants. Here we consider EAN-8-
the EAN-8 code, which consists of 8 digits, the last of which is a check digit>°. The digits Codetabelle
are represented by four black and white stripes of different width. The space between —rer | Code
two black bars is therefore also part of the code! On the left and on the right of the bar-
code there are two black and one white bar in between as delimiters. The center is 0 3211
marked by five such bars. All of them have the width "1". The code was chosen so that 1 2221
all the digits have a total width of "7". We will not go into further details here. 2 2122
To determine the coded numbers, the laser dot is moved across the code from left to 3 1411
right. It "measures" the positions of the color changes and enters them in a list. The bar 4 1132
widths are calculated from this list. Since the first three bars have the width "1", we can > 1231
determine this value quite well by averaging. The other line widths are multiples of this 6 1114
unit. Four bars each result in the code of a digit, which we determine using the table. The ’ 1312
procedure can be summarized succinctly in the form of a structogram. 8 1213
9 3112

Determine the x-positions of the edges of the black and white lines.

Determine the line widths from these, deleting the markings in the process.

Determine from these the eight four-digit codes of the numbers.

Determine the EAN code from these.

58 partly according to E. Modrow, The SQLsnhap supermarket, Scratch2015 Amsterdam
%9 Siehe z. B. https://de.wikipedia.org/wiki/European_Article_Number

10 Image Recognition 123

hd

Converted into a Snap! script of the laser we get:

when I receive
To do this, we pressed the "Make a variable" but- | EE 0w
ton in the Variables palette of Snap!, entered RELRIEE v: © IS

the variable name EAN-8-Code in the window [GEILISLNCIEEELN 90 v .. | delete the old EAN-Code and go to the
starting position on the left halfway up ... 7

If | get the message "start" ... 7

that popped up, and marked this variable as local EERSILEL | 1ayer

("for this sprite only"). Since it is not needed for ¢ determine edges v

any other object, we limit its validity to the scripts : :::::#mdths - and work through my program. .

of the laser. After that, the variable appearsinthe L CECnC UEEE

Variables palette. While we're at it, we'll also create three other variables with the names edges, line
widths and encoding. The check mark in front of the EAN-8-Code variable means that the variable will
be displayed in the output window. There we can still change its appearance in the context menu (right
click on the variable). We drag the first block under the variable names set <variable> to <value> into the
script area. Using the small black arrow, we can then select a variable identifier that is "visible" to the laser
and specify a value for it. If we now click on the block, it will be executed and the variable will get the desired

value, which can be seen immediately in the output area.

After these preparations, we must slowly start to solve the actual problem. One thing we have to teach the
laser in any case: to find the next black line. To do this, we switch to the Costumes section and draw a
small red dot there as a new costume - the laser dot. Alternatively, we can create the costume with a
graphics program, save it as a png file and drag it to the Costumes area. Using the block touching from
the Sensing palette, we can now check if our laser sprite touches the specified color. We can select this
color after clicking on the color field anywhere from the Snap! window or from the color field that pops
up. We use this block and a second one that determines whether the edge of the workspace has been

reached as a termination condition of a loop from the i s ; ;
repeat until © < touching ? _or‘ touching edge | ?

Control palette, in which the laser sprite is moved one

move §JP steps

step to the right at a time. =

When testing this block, we notice that sometimes the
laser does not move at all. When repeatedly crossing the

bars, it will happen that the laser touches a white baron "o
the one hand, but still touches a black one on the other Skl LIS

hand. After all, it has an expansion, albeit a small one. [gy S)

We therefore make sure that it first advances so far that | [sRF"Jeass

it no longer touches any black areas. Then he runs off.

After testing this script extensively, we wrap it in its own method, a new block, called go to the next black
pixel, which is marked local because no one else needs it. After that, we create a very similar method go
to the next white pixel. The comment blocks can be found in the context menu after right-clicking on the
script area.

9 go to the next black pixel I Q9 go to the next white pixel
repeat until . not - touching |7 - repeat until © not touching [l ? -
it necessary, leave last color
move P steps 2 | move @ steps It necessary, leave the last color 7
.

= =D =2
repeat until ¢ © touching ? _or‘ touching edge |?

move P steps

A 1 < touching [ll ? or touching edge | ? o
Continue to Continue to
black or edge 7 | move @ steps white or edge

£

]

10 Image Recognition 124

We test the interaction of these two methods in detail. After that we
make sure that the variable edges gets an empty list as value (set 9 determine edges

<edges> to <list>) and that the x-position of the laser is added to this S (T

list each time a new stroke is reached (add <x-position> to <edges>). == | ST

We delete the last two values of this list since they are generated when |- e ey

the right border is reached. We can observe the work of this script if we [ECCESELETELBRERECL 0

e o
mark edges as visible with a small check mark. Since everything works, e/l elil b i i o)
the script is wrapped in a new block determine edges. { add (x position to GE.
delete of (edges

Now three very similar methods fol- :
delete @EBRY of (edges

low, in which in each case the last list o

just generated is traversed to deter- [T AT
mine the next values. We process the

repeat until* ' length | of (edges = [l

first values of each list and then delete — . - ’
i add [item @E) of (edges - item K of (edges to (line widths
them until we are "through". =

delete @B of (edges

‘ﬁo_determine codes First, we calculate the widths of the
sampled bars as differences of the val-
ues of the edges list and store them
in the line widths list. Next, we deter-

script variables ‘width 1

set encoding | to list
set width1 | to
round __ mine the codes represented by this by
averaging the width "1" from the first
three bar widths and storing it in the
script variable width 1, which is only
known within the new block. We then
: delete the initial marker and calculate
add | round /A width 1} to (encoding the first 16 stroke widths for the first
i delete @ of (line widths four numbers. After that we delete
the middle marker and proceed ac-
cordingly for the second four num-
repeat €3 bers. Finally, the rest of the list of line
;dd (o = - o GRS widths is deleted. The determined val-

b ues are stored in the encoding list.
delete K9 of (line widths

delete of (line widths

Now only the decoding of the numerical values in the encoding list is missing. We again declare a script
variable code for the new block. We repeatedly compose this from four numerical values (using the join
block from the Operators palette, which works with strings). Depending on the value of the result we get
the next digit of the EAN code.

10 Image Recognition

125

‘9 determine EAN-8-Codes

script variables | code

.
set EAN-8-Code |to [i]

repeat until © length | of (encoding

set code |to il

set code |to!join ‘code item @B of (encoding

delete @ of (encoding

'EAN-8-Code

EAN-8-Code

EAN-8-Code

'EAN-8-Code

EAN-8-Code

EAN-8-Code

EAN-8-Code

EAN-8-Code

EAN-8-Code

Our new blocks, which we can use like any other command
block at the laser script level, can be found at the very bottom
of the Variables palette. The small marker pin in front of the
method names indicates that the methods are local to the
sprite. They are not visible in other sprites.

We create the arrow with one of the

~—

show a barcode

generators for this on the Internet and
save them as costumes of a new sprite,
next costume

which we create with the arrow but- FESESEEFSHgrs
ton above the sprite area at the bot- =" 500 1o

tom-right of the window. We name
this sprite Barcode. To switch between costumes, we create
a global block show a barcode (to also show this way of com-
munication between objects). This enlarges the costume to
twice its size and moves the sprite to the center. The block is
visible for all sprites.

Our little project is to be controlled by scripts of the stage. If
the green flag is clicked, then first the Barcode obiject is
asked to show a new barcode - that is, to change the costume.
This is done with tell <barcode> to <show a barcode>.

Since the block to be
executed, outlined in

gray, and thus marked | = | show a barcode |

as code has been broadcast start! | to Laser
7’

when clicked

globally declared, we
can simply drag it into space | key pressed

the previously empty = HEEEEE to\"
slot in the tell block.

Then the stage sends the "start!" message only to the Laser object. /1 Biecs

Alternatively, it could have sent this message to all of them. If only " ‘reerier i BEGls © EE

the Laser sprite reacts, then this would have the same effect.

The last two scripts are used to initiate costume changes also by pressing the space bar and read operations

by clicking on the stage.

10 Image Recognition 126

10.2 Project: Transit Prohibited!

O

Level: from middle school Materials: Transit prohibited

traneit prohibited
Modern cars have a camera that helps them "see" and recognize traffic signs. We want to
try something like that. We'll find images of some common traffic signs and scale them all to

>

100 x 100 pixels using a graphics program. After that we drag them into the Costumes area
of a Snap! sprite that we call Traffic sign.

construction site

As you can see, the signs are quite different. Therefore, one task will be to identify the shape

O

of the sign. We find round, rectangular and different triangular signs. Fortunately, we already o antry
have a laser from the last project, which we will modify for the new task. To do this, we
export the Laser sprite from the Barcode project to an XML file Laser.xml (right-click on

the sprite, click "export..." from the context menu) and import this file into the new project 1or peasetrians
either using the File menu or by dragging it onto the Snap! window. In the Variables palette
of the laser, we delete all variables except edges, then we delete the local methods except
go to the next black pixel. We open this in the block editor (right click on it), drag the blocks g rarme m
to the script level and then delete this method too.

B

How do we now distinguish the forms of the signs?

trucks prohibited

You can come up with very different methods for this. We will try it this way: We determine

the horizontal limits of the signs at three heights and then the vertical limits at three posi- \I

tions. Then we look at the results.

main road turne el

First the left edges ... then the right ...

set odges | to ' list

set xValue | to

&

set yValuoe | to pass on the right
set xValue | to

add [FENIES to (edges

set yValue |to
add ETEIY to (edges

repeat &P

- ’
‘ go to x: (xValue vy: (yValue {go to front | layer
{point in direction k2

[AT S not © touching il ? ‘
{go to front | layer _
] ‘ move §JP steps
(L EE AT ot touching [l 2 ‘ _»

add (round ' x position | to (edges
- _—_ e

= “CE— —
‘ go to x: (xValue y: {yValue

“;oint in direction @EIE

for horasms

3

ﬁange yValue | by EEED

add "'m to (edges

ﬁange yValue | by @EED

... and accordingly, the upper and lower.

We join the four scripts together and wrap them in a method determine edges. For example, we get the
following results.

10 Image Recognition

127

Laser edges

oo BB
3 o
k] -27 B
Ll a7 B
3 ront ecges. |

B 5

1] lower edges: |8
15 .

Laser edges

cn oo B
2 o |

gl 49 B
<l

5] right edges:
5] 37
= |
s]

Y e coges:
i se |

ol e B

ikl 37 J

1tel lower edges:
Wl -a7 B

1k] lower edges: 8
15 @

lo length: 16 '1
L

lo length: 16 V)

length: 16 %

Ny

Laser edges

(] < cooes: HR
T o |
£l 40 F
el a7 B
] ight edges: |
(] 37 Q
4 = |
SN
] upper cages: |
R
il o §
il 37 |
1] lower edges: |8
14 [
Lﬁ langth: 16 'a

fo_ length: 16 'H_J

> v
e length: 16 J—/

Laser edges

Q-
A 49 B
N |
B

5] right edges:

il 37

1k} lower edges:
14 14

i 5o §

i s

That looks good - except for the stop sign. Its edges look suspiciously like a round sign; we still have to come
up with something for them. Maybe a 13th "cut" at a suitable (here: fourth, in the list: fifth) position? For
this we can omit the right edges because the signs are obviously symmetrical. If we do that, then we get for
the "round" candidates:

Laser edges =
e Laser edges Laser edges
l lett edges: B & . TR &Y iott edace: B
o e cages: | et cages: I
Bl -49
H,] w0 §
% i ¢ JETR
upper edges: off edges: |8 5] upper edges: |8

~
~

i 17

] 37 E

i iower edges: §

Rl -37 B

length: 138 %)
o 2/

o length:13 V)

The 5th list entry contains the value for height 19 in each case - and thus a measurable difference.

To evaluate our results, we write a determine shape block. This is supposed to be a reporter block that

determines and returns a value - the shape.

For rectangular signs the entries 2, 3 and the 4th entry should be about the same, for the triangular signs
the values grow or fall. If we assume something round (the second and fourth entries should be about the
same size), then it is the octagon of the stop sign, if the third and the fifth entries are about the same. And
the rhombus of the right-of-way sign, if the second entry is rather small. Otherwise, really around a round
sign. And errors can occur of course.

10 Image Recognition 128

9 determine shape
script variables 'shape

Q determine edges

if I——E
/ <\ abs | of [item @B of (edges [item EP of (edges < E and
/ |

<\ abs | of §l item @R of (edges N item K of (edges < 2.

‘ set shape | to

< item @R of (edges 2 item EE) of (edges
< item R of (edges item @) of (edges

‘ set shape | to [GEUINIETGvg])

else

/ < item of (edges 2R item of (edges
if{ p—————aa—————
< item &P of (edges 13 edges

‘ R EL R O triangulartipsdown

Jil item @EED of (edges | — item X of (edges <
N
set shape | to
else
& item of (edges
of ' item @B of (edges

| set shape | to
else

‘ set shapo | to

else

‘ set shape | to

report ' ;shape

With this we have already quite limited
the number of possibilities, and we see
that - so far at least - we get by with the [F il [result

results for the left edge. We write a local - - | to (Eek Laser | for (@ determine shape ' | of Lasor
method shape?, which determines the PERTEs v: @

shape of the currently displayed sign. In
addition, the laser is sent "into the heath" i result

and hidden so that it does not interfere

further. Its work is done.

For the further meanings of the signs, the colors on the edge and inside are important. For the final deter-
mination of the type of traffic sign, let's just count the number of different colored pixels in the sign. Maybe
that will be enough. We leave this work to a new object called Color counter. This needs the pixel list of
the current costume of the Traffic sign object. We politely ask this for the required data, which we store
in a local variable pixels. There we have a list of the three color values and the transparency of the pixels
of the current costume. Since this has the dimen- e e
sions 100 x 100, we get 10,000 values.

ask Traffic sign | for ' pixels | of costume cument

10 Image Recognition 129

In this list, the pixels outside the actual

(Q pure colors of

sign have the transparency 0, those in-
side the value 255. The three RGB values

script variables (result

report
. " n P
in front of them do not represent "pure O
colors, but mixed values that are "pre- set i |tofl
dominantly" red, for example. We repeat until ©

change this by a method pure colors of i oo
..., Which sets color values above 100 to
255, the others to 0. This works very fast
in the compiled version of the map-over
block even with 10,000 values.

input names: |

=
add ",—'plxel to (result
I —
10000 A B o D report ' result
841 237 28 36 255 over | 'bixels
842 237 28 36 265
843 237 28 36 255 ool ixols [iED
844 237 28 36 265 9 >
845 237 28 36 255 ‘ pure colors of f_ask Lgn_[for' | pixels | of costume current
846 237 28 36 265
847 237 28 36 255 10000 A B C D
848 237 28 36 255 841 2556 0 0 255
849 237 28 36 265 842 255 0 0 255
850 237 28 36 255 843 255 0 0 255
851 237 28 36 265 844 255 0 0 255
852 237 28 36 255 _ 845 255 0 0 255
853 237 28 36 255 846 265 0 0 255
854 237 28 36 255 847 255 0 0 255
855 237 28 36 265 848 255 0 0 255
856 237 28 36 255 849 255 0 0 255
857 237 28 36 255 850 255 0 0 255
858 237 28 36 255 851 255 0 0 255
859 237 28 36 255 852 255 0 0 255
860 237 28 36 265 853 255 0 0 255
861 237 28 36 255 864 255 0 0 255
855 255 0 0 255
856 255 0 0 255
857 255 0 0 255
3868 255 0 0 255
859 255 0 0 255
860 255 0 0 255
861 255 0 0 255

Similarly, let's count the "pure" colors in the image: We introduce a separate script variable for each, which
we initially set to zero. Then we look at all pixels of the sign that have a sufficiently large transparency. For
these we analyze the RGB values and increase the value of the correct variable. Finally, we return a list with
the results, in which we insert the color labels so that we don't get confused.

10 Image Recognition 130

9 count colors of (pixels :

s\i':"ript variables
(red (green (blue (black (white (yellow (cyan magenta

green | to m
blue | to [.
set pixels | to
black | to [iJ Q
white | to 1 ‘ pure colors of | ask Traffic sign | for | pixels | of costume current
yeliow | to [1] -
e set colors | to (¥ count colors of pixels
cyan | to m -
rs:t magenta ‘ to m
|
e bixel - bixels Color counter colors
o= R
if ¢ ' item of
- black 0
(— 2 white 1544
| item &K of (pixel EAEEFS and 3 red 6284
<’ item @9 of (pixel Ef XL item @ER2 of (pixel 4 geen 0
5 blue 0
by €D
6 ysllow 0
7 cyan 0
< item of (pixel =N 8 magenta 12
/
<’ item @9 of (pixel | =FEH XLLE item B of (pixel
Color counter colors
‘ change yoliow | by &P
ey 8 A B
black 81
< item @K of (pixel FZE3 and 2 white 3052
3 red 2519
<’ item @R of (pixel M XLLE ' item @D of (pixel
4 green 0
5 blue 0
6 ysllow 0
7 cyan 0
/ (item @K of (pixel 8 magonta 15
<’ item @& of (pixel R XL item ER) of (pixel
"(;hange oyan | by @B Color counter colors
: : A B
S black 121
item @B of (pixel and
< - white 2249
LR item &R of red 0
green 0
blue 0
yellow Q
and cyan 5482
ELLGIE item @ER9 of (pixel magenta 0

o
“ change greon | by &P

Color counter colors
else

8 A B

< item @K of (pixel and black 0
2 white 1027

(' item @& of (pixel @ XELERitem &R of (pixel 5 rod 994

4 green 0

5 blus 119

‘change black | by &I |6 yellow 0
7 cyan 7832

8 magenta 16

black white I red
green ‘ yellow
magenta

10 Image Recognition 131

0 cvatuation For easy use of the methods, we write again a
evaluation
global method colors? which initiates the corre-

script variables 'h (h1

sponding operations.

if - (theShape =
<
‘ set result | to

| colors?
if” (theShape = eIl

——
‘ set rosult | to

script variables (pixels
when cnaca | kew nraccad

set pixels | to

call (@ pure colors of B of Colorcounter

- — with inputs [E:EUQ ISRl pixols | of costume current >
set h |to item & of (11 RS i theColors -

. S —— S black pixels 7

% €h BAEY and € h (SN @ count colorsiof B | of Colorcounter | RN =M pixels) R

QISR e SHiangulartip+top

| set rosult_| to

if (theShape = We leave the control of the objects to the stage.

set h | to item @D of | - When the space bar is pressed, the traffic sign

ek 4 should change and when the green flag is clicked,

 set rosut_| to FIYERT] the analysis takes place. The stage object queries
the results of the others and evaluates their data.
theColors > v

cyansign g
<! theColors N

white pixels 7 SRR I = 1 Y ploase*wait!

when clicked

if'<h o) and{h

| fforpedestrians| set theShape | to | ask Laser | for

y

it” €' h SN0 and € h RIEEED]
<

| set rosull | to

set theColors | to | ask Color countor | for

@ evaluation

if < h and ¢ h

| set. rosuit | to TSI
S For evaluation, we use the determined shape on

> the one hand and the counted color values on the
red sign A . . .
i’ theColors - other. In simple form, this can be done as described

e ——— red pixels /7 .
it €h DAY and €h opposite.

set rosull | to .
- The results are as desired.

if<h > and ¢ h

‘ sét rosult | to

6 D) > [2530 TR D) < [2565
.

‘ o I EETT N O trucks*prohibited

if ¢ (theshape = TMEQ

set h |to item of (1 NG ¥ theColors v
—— S— black pixels 7 H H =
G T Y o < BEEr transit prohibited

‘ SR EET e G maineroad-turnseleft

| set rosult | to

v

cyan pixels /7

10 Image Recognition

132

10.3 Project: Face Recognition

Level: high school Materials: Face recognition

In order to discuss the social consequences of informatics systems, face recog-
nition is a good topic. Therefore, we want to use the already known features
of Snap! for this purpose.

Passport photos are strongly standardized for good reasons: the facial posture
is prescribed, ears must be visible, ... This makes face recognition much easier.
We therefore draw four faces that roughly correspond to these regulations.
On these "photos" we then apply the already known procedures.

We are looking for the face, which in these four cases is roughly "pink". Since
the face colors are nevertheless different, we first perform a color space re-
duction. We find suitable limits of the (here) three intervals by trial and error.

ﬁaduee the color space

script variables | result

switch to costume The process is from
.|s\et result | to list . .
- the traffic sign recog-

[seti |to & g

nition in the previous

section. The faces

add [J to (result now stand out very

nicely in orange - re-

if ¢ item (i @ of (pixel

;dd to (result input names: (pixel ga rd|eSS Of hOW they

sz — looked before.
‘_add to (result

[change i | by &
T - =
add [)] to (result

add (11 @K2 . pixel) to (result
- = J—
| report result

over | pixels | of costume current

go to x: @D v: @

Peter

Paul

Mary

Hannah

10 Image Recognition 133

When we erase all the colors except orange, only

delete all but pink
the faces remain. We stamp the result on the stage

switch to costume
¥ map

if < item m of | pixel

and let the passport photo disappear. It has done

= and < item of (pixel NP

its duty.

else
report ({1

input names: | pixel

In these faces we now must identify the eyes, the
mouth, the nose, etc. From the ratios of the sizes

over | pixels | of costume current

eye distance to nose length, mouth width to face

clear
stamp
hide

height, ... we can then identify the person.
How to find eyes?

They represent "holes" in the face, which should not be too large and not
too small. For example, the right eye (from the person's point of view)
should be at the top-left of the passport image. To do this, we first need
to be able to access individual pixels in the image. For this purpose, we

RGBA | at myself

With this, we search the upper-left area of the image for a "hole". We ex-
amine the range -50 < x < -15, 10 <y < 60. We find the values by trial
and error. For the comparisons, we take the green value, and we examine

use our Laser sprite, which directly provides us

with the color value at its position.

the range line by line.

repeat until

We pass over a possibly existing orange area and
< item @K of | RGBA

at myself > or < x position EIEF
stop at the first white pixel. = -

change x by &I

to

to x position

Then we note the left x-value, count the following

set n

white pixels to the right and note the endpoint. gL

repeat until
< item @EJ of | RGBA | at myself

< or € x position =3

change x by “
>

by G

change n

set xold | to x position

set yoid | to y position

If the width corresponds to an eye, we determine

the center and measure the number of white pixels p— R
if <'n BE and<‘n ﬁ@

set xp | to |ILLILER (xI + £ n VAED

go to x: (xp y':‘r

in the vertical there.

m @& of | RGBA | at myself

—=
set yp | to | round &_‘!u

change y by n

set pen color to

set pen size to §P

pen up

set yu |to y position
s

go to x: change y by
+ .
to ﬂ

b
repeat until

(< item @R of | RGBA | at myself

_pen down ~

go to x:

or < y position

< [130

pen up

change y by &P
iy
| change n | by B}

go to x: (xp vy: (yu

pen down

| e .

go to x: (xp

pen up
If the result is also "correct”, we let draw a cross at the position

and return the center point.

10 Image Recognition

134

look for the right eye

warp
P

ript variables yu xp yp xold yold n
show
go to front | layer

go to x: &P v: EB v

repeat until © y position < f[i] start position

repeat uni
(repeat until
d item of | RGBA | at myself or 4 x position =3 v
ignore orange 2

Vs

change x by &P

= =
set n to ﬂ w

set x| | to x position count white pixels ~

s

Ghabionfl

{ @ item @B of | RGBA | at myself < or 4 x position JEAQE]
change x by &P

»
change n | by &P

3 >

set xold | to x position

set yold |to y position

— @ and<{ n - v
is the width correct? A
A

store x-value of the center and look for height 2

A d

search
upwards .~

set yu | to y position -

change y by & search downwards /

v
count white pixels//’
‘ f item & of RGBA | at myself < or 4 y position

change y by &P
change n | by & ¢ y i)

—

if € nl=@" and { n =& >
is the height correct?
v

store y-value of the center and mark the eye 7
set pen color to

set pen

pen up <«

go to x: (xl

pen down
1

go to x: | (xl +[6,: xp - 'xl
| .

pen up

go to x: (xp y:{yu

1

pen down

1

go to x: (xp y:

1
pen up

set n |to m

go to x: (xold y: (yold

change y by &
go to x: EEP y:

-
report

=

If we still haven't found an eye,
then we first continue search-
ing to the right. If there was
nothing there either, then we
repeat everything in the next
lines.

The procedure in full is shown
opposite.

10 Image Recognition 135

We find the left eye using the same procedure, and

look for the nose

for the mouth we determine the two corners of the 5 i
mouth. The nose we simply draw between the eyes

show
and mouth set result | to

round [item @K) of (leftEye + item @KJ of (rightEye (2]

rightEye
round(item @& of (leftEye + item @) of (rightEye

round (item K9 of ‘mouth + item K of (mouth Al 2)
S g
round [item @& of (mouth m

set pen color to

set pen size to &P

go to x: | item KD of (result vy: item @KI of (result
pen down

go to x: | item @ of { result y: item w of (result
pen up

hide
hen

length: 4 A

r;port result

From the determined values we calculate some ra- PeiESR el

tios and store them together with the names ina | item @R of (mouth — item @ of (m
list allAttributes. By comparison with the currently | B85 of SEEN > REIREEC) = SN2 Y RETE L
determined values, the searched person can be s'fat noseTOeyes | to

easny identified. S8 item @D of (nose - item @B of (nose

i item @K of (leftEye — item of (rightEye

identification set mouthTOeyes | to

test 28 item E&E) of (mouth — item EK) of (m

script variables ' i n attributes found delta

B A item @K of (leftEye. | — item @K of (rightEye
set found | to .1::\51: .
to A set newAtiributes | to

set |
> list mouthTOnose | noseTOeyes ' mouthTOeyes

repeat until * (found or{ i |- allAttributes

set atiributes | to item (i of (allAttributes
+

set test |to < true @

I
set n | to

5 A 2 C D
1 Name Mouth : Nost Nose : Eye Mouth : Eye
n of (newAttributes |- n of (attributes — (delta > Mary 0.490 1114 0.545
n of (newAttributes K& item (n of (attributes | + 'delta 3 Hannah 0.674 0.896 0.604
set test | to < (@ false 4 Peter 1.034 0.8132 0.844
;hanga n | by €9 5 Paul 0.465 1.049 0.488
set found | E2C. true @ 2 4
;at person | to item KD of (attributes

10 Image Recognition 136

The overall problem can be solved by composing the subproblems. We assume that the image of the person
to be identified is on the screen. This is transformed, stamped on the stage and the changes are displayed.

The four people are safely recognized.

face recognition

rightEye leftEye

reduce the color space

delete all but pink
2T

|
leftEye | to [ask Laser |for ¢ 1 p—

rightEye | to 5‘ask Laser | for -
: EN-

mouth | to [ask Laser | for 0 3 :

nose | to | ask Laser | for

item EK of
item @& of (nose — item @X2 of (nose D rightEye
g 35 B
item @) of (nose ~ item @&2 of (nose N/
. ~ -
item @K of (leftEye — item GKD of (rightEye] + length:2
set mouthTOeyes | to nose
— % il 11 B
item &K of (mouth — item EKY of (mouth |
2N
item @K2 of (leftEye - item EK) of (rightEye f 3“'
” 2 enﬂ'h:4 ;

set newAttributes | to
list IO (mouthTOnose (noseTOeyes (mouthTOeyes

identification

10 Image Recognition 137

10.4 Tasks

1. a: Find out about the calculation of the check digit in the EAN-8 code. Use some examples to test
whether you have understood the procedure.

b: Have the barcode scanner check after each reading process whether the check digit has the correct
value.

c: Extend the barcode scanner with more capabilities: Codes can also be read "backwards" and there
are also longer codes, e.g. EAN-13.

d: Extract the manufacturer and product number from the barcodes read. Using appropriate data, in-
dicate the results in plain text: "Honey from the bee house", ...

2. Develop a barcode generator. It is given a sequence of numbers. From this, it calculates the check
digit and prints the barcode. This can be done, for example, with the help of appropriate costumes
that are printed on the stage at the right places with the stamp block from the Pen palette.

3. Have foreign traffic signs identified. Use the signs to determine where a picture was taken.

4. A speed warning system in a car is designed to determine whether the speed limit has been ex-
ceeded based on changing traffic signs.

5. German license plates contain a character set that is very suitable for image recognition (uniform
character width, ...). Develop a method that recognizes license plates. Discuss the consequences.

6. Facial recognition can be found today when logging into a computer system, in cameras and
smartphones, in social networks, ... Learn about other applications and discuss their results.

7. In some states, a system of social credits is being introduced or its introduction is being discussed.

Find out about the system and discuss the consequences in connection with extensive video surveil-
lance.

11 Sounds 138

11 Sounds

Similar to animated graphics, it is somewhat difficult to only describe the handling of sounds. Therefore,
just the different possibilities are presented here - with the urgent recommendation to test and experiment
with the "code snippets", too.

11.1 Find sounds

First, we need a sound in WAV format. For this we can either import it via the
file menu (File 2 Sounds...) ...

... or drag it "from outside" into the Snap! window as usual ...

Import J Cancel A

... or simply record it yourself. For short recordings, this can be done directly
using the Snap! sound recorder on the Sounds page. For longer recordings
you should use one of the common tools.

Sound Recorder

OIONICR =
S conen)

Hz for @ secs at @ZAINEY Hz sample rate

note from hz

from the file menu. This provides us with the following
name ol note

blocks from the Sound, Sensing, Pen, and Operators pal-
ttes
' [record]

For further processing we load the library Audio Comp

plot sound

In the following we work with the file sound check.wav,
which we created in one of the described ways. Fy——

11 Sounds 139

11.2 Process Sounds

If a sound is available on the Sounds page, it can be displayed in [EFTRSNREES

the corresponding blocks. The easiest way to try this is in the .
play sound soundcheck wuntil done

block for playing sounds.
stop all sounds

For further processing we need a representative of our sound.
This is what the sound named <soundname> block is for. If you
edit it, you have found a small example for the use of the sound (EEEES LU LT T EIERS

60
blocks. sound named

The of block for sounds provides access to further properties of @ s e,

play sound soundcheck at @ENRS Hz

sounds. In particular, its samples®! can be determined as a list.
name
These are needed if a sound is to be edited actively. For example, duration
we can influence the playback speed of the sound by changing length
. number of channels
the sample rate. The Hz for ...-block creates samples with the sample rate
properties to be specified, e.g. "pure sounds". samples

The visualization of the sounds is interesting. Using the plot [N 200 <)
<sound> block we get a graphic of the sample on the stage.

2]
©
N
=}
S
4

I

r4

44100 items

i o |

:

0.12505052:

Hz for secs at Hz sample rate

D.367329594
0.42487666

© O N O O A W
R
JEETE

=]
g
2

M am,%ﬂ I

0 The same applies to (almost) all other sound blocks. If you edit them, you will find examples e.g. for the use
of JavaScript.
61 https://de.wikipedia.org/wiki/Abtastrate

11 Sounds

140

11.3 Make Music with Jens M6nig®

Level: high school

Materials: Music

A sample consists of a list of numbers, stereo sounds of a two-element list of samples (see above). Conse-

quently, sounds can be manipulated with the usual list operations, e.g. invert, change value, ...

play note
play note
play note
play note
play note
play note
play note
play note
play note
play note
play note @k
play note
play note

If you play several notes in parallel, chords are created

play chord ' list &3] for &P beats

Fuchs, du hast die Gans gestohlen

for beats
for beats
for beats
for beats
for beats
for beats
for beats
for beats
for beats
for beats
for beats

for beats
for beats

But songs can also be composed of notes, even quite com-
fortably. The selection of the note is done on a keyboard
(piano keyboard), which you get when you click on the
play note...for...beats block the little arrow down for the
drop-down menu. From this you can quickly compose
songs ...

play note @EE for beats

D (62)

... and play them on different instruments and at different

speeds.

set instrument to

set tempo to bpm

Fuchs, du hast die Gans gestohlen

. .play chord (data } for ‘beats # = 0.5 beats

if* length | of (data = [

... and from these songs, using suitable list of pairs of LSl R iy e e

(note, duration), ...

set bass to
n

6411
58/ 1)

... Which can be played and varied.

play song bass

else

EILTN | play note | item @B of (data for (beats beats | |4

play chord | all but first of (data for (beats beats

. hplay song [song i
if ' length oi-'-ssng >[9
is | item @K o
play chord | item @E2 of (1 NERAT so—ng for

item &84 of | &R7 7 song beats

if ' is | item @K of m 1 v of O a number

play note | item &K of (021 for
item & of
else

rest for | item &F of (11 @Re =i song beats

play song | all but first of { song

52 Following the example of "music" by Jens Ménig.

11 Sounds

141

specify two basic chords

describe bass accompaniment and
song using lists of tone/duration pairs

make a few presets

play the song,
finish with chord
and short break

and now with variations the song and
the bass accompaniment
play again and again

both play in parallel
because of the launch block

transpose a song

script variables ! haj min song | bass (delta

set maj | to list (Y] CH B &
set mn | to list 8 (¥ [FE &

set bass

over | maj

set turbomode | to v@

set tempo to &EEP bpm

set instrument to

|;Iay song ' -son9

pjay chord {maj for &P beats

rest for &) beats

forever
set delta | to { pick random @B to EP

set instrument to { pick random &P o €

il item of || true @ @ false

launch

set instrument to (pick random &P to &P

play song | song | bass transposed by f delta mod &3 | €9

play song éong éong transposed by delta

song i transposed by (delta # = 5

is item of B alist |2 ‘then

& + (dela

il |else
LU item @S of B | + (delia

over | song

11 Sounds 142

11.4 Project: Hearing Test

Level: from middle school Materials: Hearing volume test

In a hearing test, the hearing ability is

raquaney (7

TS TTI e ST AT IsTITIe eI
L0 i L i |

'"\u""-\lu"'wlu""l'

tested at different frequencies or dif-
ferent volumes. In this case, we play

tones of increasing frequency until T I
V(L I
i1 (e I |
TR T
e [

the test person hears something.

Then he (or she) presses the space [o G TR ST e - -
bar. This frequency min is noted.
Then the frequency is increased until
nothing is heard. This frequency is
also stored. In the current Snap! ver-
sion, the Java-Script extensions in
the Settings menu must be enabled
for this.

Make sure that the volume cannot become too high!

11 Sounds

143

11.5 Tasks

1. Establish experimental conditions in the hearing test that lead to comparable results.

2. Change not only the frequency, but also
the volume. Since our sounds are de-
scribed by samples, the volume can be
changed by simply multiplying the sample
values. (This can be done as in the script or
by applying the multiplication block as a
hyperblock.) For example, in the following
script, the volume is increased until the
spacebar is pressed.

script variables (a
set a | to! R Hz for EP secs at EDERY Hz sample rate

set 2 | to| map (@ x LIS over (a

repeat until key space pressed?

play sound (b at 0K Hz
iy

set b | to| map . 1.2) over (b

Make sure that the volume cannot become too high!

3. Measure the cutoff frequencies and the volume required per frequency to hear. Create a diagram

from this.

lower cut-off frequency: 60
upper cut-off frequency: 8500

MAKE SURE THAT THE SOUNDS DO NOT GET TOO LOUD!

if you hear something: Press space bar and hold briefly!

current frequency: 5060 ey

60
560
1080
1560

4. Take a trip to an ENT practice/clinic. Present your diagrams and have them explained to you whether
and what can be read from them. Find out about causes of possible hearing loss.

12 Project: Electrons in Fields

144

12 Project: Electrons in Fields

Level: high school Materials: Electrons in fields

We want to use the knowledge we have ac-
quired so far to realize a small project from
the field of - well - physics: Electrons move
in a tube in which a capacitor is built in. This
tube is brought inside a pair of Helmholtz
coils in such a way that the electric and
magnetic fields are orthogonal to each
other. Both are semi-homogeneous. This is
one of the standard high school experi-
ments. All components can be developed
independently in different groups, and in
very different ways. Only the physics re-

mains the same. That's the way it is with

Magnet Coils | u
X = 4

Electron source Ub u
\ -) —
s J

:_. e ——————

Capacitor U B
| =)

4

physics.

12.1 The Electron Source and the Experimental Setup

Since this is a standard experiment, the required equipment should be available in the physics collection. It

is therefore a good idea to set up the experiment properly, photograph it and extract the partial devices

from the pictures so that they can be used in the project. Here in the script, only simple drawings were

made instead. We need pictures of the capacitor, the coils, the electron source and - for illustration - the

generated fields.

First of all, let's enlarge the Snap! stage to 800 x 600 pixels. There is a
menu item for this in the settings menu of Snap! Then we draw a simple

picture of an electron source and import it as
sprite.

After starting the program with the green flag, our electron source is
sent to its place in the correct outfit. If necessary, we can also move it
to another place in the experiment. The device has only one character-
istic property: the momentary acceleration voltage of the emitted elec-
trons. For this a local variable Ub is generated and displayed on the
stage. In the context menu of this display slider can be selected and the
minimum and maximum value can be set. The slider is now used to
change the variable value between these numbers while the program is
running. We choose a range between 0 and 250 (volts).

¥

@ Language...
Zoom blocks...
Fade blocks...
Stage size...

Microphone resolution...

electrons in fields

a costume of the current

' Electron so\
o normal

] clarge
slider

M ———
slider min...
slider max...

import...

raw data.__.
export...

145

12 Project: Electrons in Fields

12.2 The Capacitor and the Electric Field

The capacitor in the tube has a plate spacing d, which we set firmly so that later a useful electron movement
results. After it has also found its place, it runs continuously until the program aborts. If we set the applied
voltage U to zero, it should disappear, so that we can also study movements only in the magnetic field -
there it would only disturb. For U and d we set up local variables. After that, it tells the electric field E-Field
its current value. This is done by setting in the context of the E-field the value of its local variable E with
the value U/d.

Indeed, it is true: E = E

It is important that the slots in
set <variable> to <value> are blank,
so that they can be replaced by the

tell to ‘sxet ol | with inputs [F o

switch to costume capacitor |

g
go to x: @B v: €

set d to

specified values!
set U ([to §

hd

without applied voltage
the capacitor disappears

Then, in the same way, he sets the
ghost effect of the electric field, i.e.
its transparency, to a value that de-

ETSE.
_:/—J
tell [EFedw to rs:t % | | with inputs [E "

B S
G N =FEEERGE | set ghost | effect to @ N4
with inputs 100 ' =~ (10 x 07 (g

pends on the applied voltage. The

smaller the voltage, the more trans-

v

parent the arrows symbolizing the

calculate current electric
field strength Y

electric field appear.

visualize electric
field strength V]

v

T

The electricfield, another sprite of its

LElactron source Ub J i Magnet Coils | n ‘

own, simply consists of a costume
containing a series of parallel arrows
that fit between the capacitor plates.
It has a local variable E, which is set
by the capacitor - as described. We
display the voltage of the capacitor as
a slider variable on the stage.

(-Capacﬂor u B D

12 Project: Electrons in Fields

146

12.3 The Helmholtz Coils and the Magnetic Field

The Helmholtz coil pair is symbolized
by a simple circle on the stage.® It
contains a local variable B, the mag-
netic flux density, which turns out to

be B= 0.008%- | for commercially

available devices, where | is the elec-
tric current through the coils. We dis-
play it as a slider variable between O
and 10 (amps). That's pretty power-
ful. The coils, much like the capacitor,
tell the magnetic field what value and
transparency it has. Like the electric
field, the magnetic field consists only
of a picture.

If we switch off the electric field and
consider only the electron orbit in the
magnetic field, we get an approxi-
mately circular orbit, but not a closed
one. The spiral results from calcula-
tion inaccuracies because the calcu-
lated changes are too large. We
would have to proceed much more
small-step. So, this would still have to
be worked on!

-

without current, the coil pair
disappears y

tell B-Field | o/ \—g;et

|to B | |wiih inputs 5] @EEED x (1 -
: calculate
current
tell B-Field | t0| set ghost | effect to @ | 4 magnetic flux
visualizing the density 4

i s @D -

magnetic field y

Magnet Coils | n ¥

" Electron source Ub n

4 Capacitor U “ .

8 You can really make this much more beautiful!

12 Project: Electrons in Fields 147

12.4 The Electrons

Now comes the bitter moment when we can no longer avoid physics. So be it. @

Two forces act on an electron in the arrangement: the electric and the magnetic. With the electrical one it

is quite simple. It acts upwards here because the electron is charged negative: Fe’y =e-E

—

The Lorenz force F| = -V x B is orthogonal to the current velocity of the electron and to the field direc-

tion. So, we have to work with vectors. The magnetic field has only one component in z-direction, i.e. "into
the screen", the velocity has two components in x and y-direction "on the screen".

v, 0 v,-B
So, itisvalid: F =e-|v, x| 0 |=e-|-v,-B
0 B 0
) v, B
Insummary: F ~ =e-|E-V,-B| andbecauseistrue: F =m-a
0
we obtain for the accelerations in the two directions:

(5] e
:E'Vy'B und ay:E'(E—VX'B)

with the appropriate signs to the coordinate directions of Snap!. These accelerations change the velocity

a

X

components and these in turn change the position of the electron. That's it.

We can transfer these results directly into the script of the electron. We adjust the natural constant e/m a
little bit for this, because "real" electrons are significantly faster than our screen representatives. Other
adjustments are not necessary. So, the electron needs only the "too large" chosen local variable e/m and
the acceleration and velocity components. To make it easier to follow the trajectory, it is drawn on the
stage.

12 Project: Electrons in Fields 148

One can observe the some-
set e/m Ilo -

times astonishing movements switch to costume electron here the correct value of 1.76x10°11 C/kg has been

changed in favour of a speed that can be displayed. 2

of the particles now nicely' Of go to x: '7 + | xposition | of Electron-source
yposition | of Electron"source

course, we must ask what is
true and what is due to numer-
ical effects. Projects never end,

hd

wait for it to start. &4

they give impulses for further
. v
q ueStlons ' accelerate electrons with Ub Vi
hd

or © key space | pressed? fly to the edge or to the capacitor
plates
v

the electrical and magnetical forces
act within the arrangement V]

set ay ‘tn '/elm x

;P ;:iange M by &
{_Eange M by m

go to x: | x position | + (v y: ! f y position + v_v

go to x: (@) + xposiion | of Clectron-source :

yposition | of Electron'source back to the top VA

: show
- A+

'/Electron source Ub nij

-
—_—

P —
Magnet Coils | n

N

G Capacitor U u

13 Texts and Related Topics

149

13 Texts and Related Topics

13.1 Operations on Strings

Level: from middle school Materials: Stringoperations

Like its predecessors, Snap! includes a minimized set of methods that work €773

with strings. These include

e join <stringl> <string2>... :

e split <string> by <char> :

o letter <n> of <string> :
¢ length of text <string> :
e unicode of <char> :

e unicode <n> as letter :

split by 34

the operator for concatenation of multi- letter of
ple strings. The result is a new string. The EaEliio s
operator can be extended with further ar- -

; 64
guments using the arrow keys.

the operator for splitting a string into a
list. The splits are done at the specified characters, typically spaces.®?

returns the nth character of a string.
returns the length of a string.
returns the Unicode of a character.

returns the nth Unicode character.

Other string operations are located in the libraries. @FEEE D

They can be imported via the File menu. The new
blocks are then located under the Make a block

button in the Operators palette.

Reporter Predicate J

< forall sprites _s for this sprits only

9K) Cancel

oK Aoply Cancel 7

substring of [l from position @ to position @ inclusive

We want to take a different approach here by building any needed
methods from the basic operations. First, we want to write a method
rest of <text> from <index> that returns the rest of a string starting at
a certain index. So, we create a new block, this time assigning it to the
Operators palette so that it appears nice and green with the string op-
erators. Since this is a function, we check "reporter", and because of
course we want others to benefit from our work, we leave it at "for all
sprites". We can insert the parameters at the + signs between the words
of the method header, as already described several times. We specify
the type as text or number and set the parameter index to the default
value 1. Both will be displayed in the method header as index # = 1.

64 The block can additionally perform operations with other data types (see there).

13 Texts and Related Topics 150

In the script we copy all characters of the text from —
rest of (text from (index # =1

the index value into a string variable result. We re-

turn this as a function result using the report block. [SEEs ERER RN T
warp

To make the whole thing nice and fast, we wrap it

. set rosuli | to

in a warp block. = o

if - (index > [
set i to

repeat until

| set rosult | to [join (result i i text

Ireport’ result

In a very similar way, the function first part

. . . first part of iﬁ to (index # = 2
of <text> to <index> returns the beginning

script variables (i (result

of a string.

set rosult | to I

|-

| set i to

repeat until | ¢ i)= index or (D > | length of text (text

(T

set result | to [join (result \\J ter (1) of (51

With both functions it is easy to get a snippet from
. part of (text from ‘end # = 2
a string.

from | start

And the position of a substring in another string can —
. . . . position of (part
also be determined - nicely recursively. If it is not

. script variables (pos
present, then 0 is returned.

"¢ length of text = 77) | = length of text (- "

rt of (7)) to length of text part

| set pos | to | position of (part | in QS8 8 text Nif)y) 2

13 Texts and Related Topics

151

This makes it easy to perform standard operations

[replace all “old

with |

such as replacing in strings. S

warp

set pos | to .position of (old in text

set toxi | to | join

)
So that we can delight mankind with these new opportunities,
we export the created blocks to a library. To do this, we select
Export blocks ... in the file menu and then select the blocks to be
exported - all of them, of course! We get a file Stringoperations
blocks.xml, which we save in a suitable place. If necessary, we
can load the blocks into other projects via the file menu.

=rd Y
u first part of il to €

® { position of [l in 1IN
t ‘replace all [l with [l in I

w Cangel |

13 Texts and Related Topics 152

13.2 Vigenere-Encryption

Level: high school Materials: Vigenéere encryption

Vigenere encryption is an extension of Caesar encryption in which each character of the plaintext is shifted
by a number in Unicode derived from a key character. Usually, the key is shorter than the text to be en-
crypted, so you simply extend the key until it is at least as long as the plaintext.

THISISAFULLYSECRETTEXT
NOTHING
NOTHINGNOTHINGNOTHING

Example: Plain text:
Key:

Extended key:

Thus, the first character of the plaintext (T) is shifted by 14 characters (N is the 14th character), the second
character (H) by 15, the third (I) by 20, and so on. If characters larger than Z are obtained, then the charac-
ters are shifted cyclically starting at A - as usual in Caesar encryption.

We write a small script that specifies the key and

clicked

when

the plaintext and lets us determine the ciphertext
using a function. So only the encryption method is
interesting.

set ke

to
A ET RIS O 1 Thistexttisto’beencodedtincredibly“cleverly.

set ciphertext | to [encrypt (plain text with (key

Since we are working with the character codes, we
need the two blocks from the Operators palette:
unicode of <...>and unicode <...> as letter.

code (c # iin capitals

First of all, we want to be able to convert codes
from the lowercase range (97 ... 122) to uppercase
codes when needed. This is done by subtracting the

value 32 from the character code if necessary. Then
we generate a list of character codes from the

passed plaintext, a character string, which is to be

split by y
map (code in capitals

called textcodes. A list is created from a string by

applying the split ... by ... block. We pass the code
of this function to the map <function code> over
<list> block, which can be recognized by the gray ring around the function block. That is, the function is not

over | split plain text by

executed first, as usual, and then its result is passed, but the program code of this function is passed to be
executed in the map-over block. In this case, the "mapped" function consists of first determining the
Unicode of a character and then passing it through the code in capitals function. From this list, we still
throw out any invalid codes with a value less than P
1. We store the code lists of plaintext and key in the] ‘g

 map | code in capitals

set koycodes | to

from

variables textcodes and keycodes respectively. e —

from

keep items >0

map | code in capitals |»|over /[0

13 Texts and Related Topics 153

Next, we extend the keycodes list by the codes of
the key until the list is at least as long as the
textcodes list. This is done here by doubling the
keycodes list using the append block each time.

repeat until © ' longth | of (keycodes | = length | of (textcodes

— -

‘set koycodes | to ' append (keycodes (keycodes

Now we just have to apply the Vigen-
ére procedure, in this case only to the (i |= &P to longh | of (textcodes
codes of the letters. Instead of "map-

of (textcodes

ping" a function, this time we use the

set help | to

for |00p. item (i of (textcodes R item (i of (keycodes — 64 |
With their help we go through all repeat until < (help < [
characters of the textcodes list and | change hoip | by &ZD

=

<

set rosult | to | join result _unicode i1e|p

encode them as specified.

set rosult | to | join (result | of (textcodes JEEN[G:lg

The complete process:

. encrypt (text with (key

script variables (i (textcodes (keycodes (result (help

set toxicodes | to -

keep items < =0 from twice the mapping function
- combined with keep ... Y

unicode of [ALNCT =15 uy:r ! split (text by

set koycodes | to

keep items (<] = [i] from

split (key by

repeat until ¢ ' longth | of (keycodes = longih | of (textcodes v

oxtend the key 7
‘ set koycodes | to append (keycodes (keycodes

= .
for(i = &P to longth | of (textcodes

—_— — v
< item (i of (textcodes N and< item (i = of (textcodes' K[encrypt upper case
—— letters only Y

set hol to

item (i ' of (textcodes J2 item (i = of (keycodes — 64 |

repeat until © (help <

I change help | by &P

set rosult | to | join (result @[] [-N help Kb

set rosutt | to | join (result unicode @ICHE TR textcodes’ ELNE:C

Tr:port result

13 Texts and Related Topics 154

13.3 DNA-Sequencing®

Level: high school Materials: DNA analysis

In bioinformatics, partial sequences are extracted from a broth of biomolecules con-
taining fragments of DNA chains. From these, the entire DNA is reassembled. Here,
we use a highly simplified model in which the partial fragments are represented by
strings consisting of the characters A, C, G, and T. The partial fragments are then
reassembled. The fragments "overlap" partially, so that the original DNA can be re-
constructed from matches at the chain ends.

First, we need "DNA". Sequences can be found on the Internet. But since the mean- ;
ing of the sequence is not important here, we simply generate it randomly. The DNA-Helix
product, a long string, we chop up, i.e. we split it into pieces of different length,

which partly overlap. We accomplish this task by inserting a piece of the end of the predecessor at the front
of a chunk. In the first section, this piece is empty. We use the string library that we created in chapter 13.1.

[produce DNA of length (n #

script variables (result (r .
break in pieces DNA | dna

script variables | result piece r
“~

warp

set result | to list

set piece |to

set rosult | to (join (result

set result | to (join (result

set piece | to join | piece (il CliC ‘dna L2 r
1

set result | to [join (result set dna | to | rest of (dna

1
add (piece to (result
—

result set piece | to
rest of | piece from

- & |- pick random &P to &

if © \LJJJ'-JJ of text (:I\1" >
add (dna to (result

—
[report result

The sections are still in the correct order, so reconstruction
set rosull | to list would not be a problem. We change that by mixing up the

repeat until . longth | of (list. | = [{ order.

N
set r | to | pick random &P to longth | of (Tist
1€
add (=00t Killist) to (result
e
delete (r of (list

report ' result

85 A short description can be found e.g. under http://molgen.biologie.uni-mainz.de/Downloads/PDFs/Ge-
nomforsch/Modul10B_Skript2015-Hankeln.pdf. Picture from https://de.wikipedia.org/wiki/Desoxyribo-
nukleinsaure

http://molgen.biologie.uni-mainz.de/Downloads/PDFs/Genomforsch/Modul10B_Skript2015-Hankeln.pdf
http://molgen.biologie.uni-mainz.de/Downloads/PDFs/Genomforsch/Modul10B_Skript2015-Hankeln.pdf
https://de.wikipedia.org/

13 Texts and Related Topics

155

We then use the following command sequence to
obtain the "soup" of DNA pieces we are looking for.

To reconstruct the original DNA from this, we need
to determine which fragments were once con-
nected. We create a list called connections, in
which we enter the predecessors and the length of
the overlap. Since the first fragment has no prede-
cessor, its overlap length is zero.

e
‘ find connections

N
script variables (i

—~
‘ set connections ‘to list
|to

repeat until < i > length | of | DNA pieces

add | who is the predecessor of item (i of (DNA pieces |? to

One piece of DNA was "attached" to another if a
sufficiently long overlap can be found. Since simi-
larities can also be random, we define "suffi-
ciently long" as "b". For a given sequence, there
are four ways to "guess" the correct character for
each place. So, the probability of generating the
character correctly by chance is 0.25. For five
characters it is then 0.25° = 0.00098. This is suf-
ficiently "unlikely" for us.

So, the only remaining

problem is to determine 116 1A2 f;
whether and if so, how far 2 4 6
two DNA sequences over- j E g
lap. We place them (men- ° 7 9
tally) on top of each other 3 12 2
from the middle of the first & 1® 8
one and then move the sec- 190 E E
ond one step by step "to :; z ;
the right" until we either 1 ¢ 10
detect an overlap or until :; 163 170
we are too closetotheend 16 1 10
of it.) Y

set full DNA | to / produce DNA of length

set DNA piecos \ to "-break in pieces DNA | full DNA

set DNApieces | to (mix (DNA pieces

WIS GGTGCGCCCTATCCGTGTCTATTAAATTTGCCTCCCCAGAAGCCGCTGAGGGGTTCGCTTAL
T A aTAGCTATE TCOTATGAGCCAAGTAACTTOGCTAAAAATATEaGCOT

' DNA pieces
4] CCCATGACCTACAAAATCCCGTGTGGGTGACA(|
] CATARAACTTGAGGCCTCGACAGCTGGTAAAG]
k] TGAGCCAAGTAACTCTGGCTAARAATATCTGG
£l carcaTaccTaTcTOCTAATGAGCCAA B
] TCTGGACCATTATCTTAAGATACTGGGACTCTTY |
(] AGTARGCCAGATCAGTACGAGGCGAGTTAGCA|
[CTGTGTGAAGGACAACGTGCGTTGGCGATGCC]
] GAGCCTCOAARATATAGAGCTGGTTATTAAACT

AAACGAGGGGTTTAACCCCTCTTGTAATTTATGH
Ut CCATCCGTCCTGACTGAATCTTCTGGACC 3

ACAAGGCCTGTAGCCTC

1] ACAGTGGATCTGT.
. Z O v

who is the predecessor of

script variables ' i overlapping

warp
set overapping | to m

[to ﬂ

repeat until

y < i

set i

=¥ length of (DNA pieces or € overlapping |- 1

i of (DNA pieces

set overlapping | to | how far overlap 'a with item (i of (DNA pieces ?

change i by &9
[

(G Lhd list (i — &P (overlapping

revort XTI

overlapping >

how far overlap ! end with | start ?

script variables i hit?
~

warp
set hit?

L . false
to | round ngth of text ‘start)}/ &P

b

set i

repeat until * ' hit? or < i

set hit? | to

from =

by &P

c.hange i

if hit?

else
report [5

13 Texts and Related Topics 156

Now we should be able to reconstruct the original

search the index of the piece with the predecessor 'n #

DNA from the list of connections. We do this by

script variables ' i result ' found

searching through the list of connections, starting

with the value O of the first piece. To do this, we [EHEs T TS
set i to

search the connections for the element whose first

set result | to E]

entry corresponds to the value n. We return thisin- |

repeat until & length | of (connections M or | found

dex if necessary. We return this index if necessary.

to ¢

Once we have found a piece of DNA, we append it i /ound

to the previous finds and continue searching. The
process ends when we get a zero as continuation

if found

index. Then we are either finished or an error has

crept in during the search for overlaps. With the
report [0 ‘

short overlap length, this happens sometimes.

Finally, we check whether the DNA reconstruction was successful. The reconstructed DNA should already
be approximately as long as the original - and of course it should also match the original in this area.

It does - most of the time.

< a equals b

S ppra— P ——NY, - @)
ey CUIG full DNA equals | DNA reconstructed "’/_)
if \LJLQ’.}J of text < ‘JJJJJQ'J of b

set length | to ' length of text ' a

set length | to ' length of text (b

~

if ¢ (length < m & length of text | full DNA
reor

first part of (C]) to (LIFT0)) J= first part of (1) to (LT1[1)

13 Texts and Related Topics 157

13.4 Text Files, Server, and Frequency Analysis

Level: high school Materials: Textfiles server and frequency analysis

From obscure sources we have received the information that there is anin- /. ™
. . .) l\ CIp ® normal /"
credibly secret text in the ciphertext.txt file on our computer. We even learn > large
in which directory it is located. To be able to edit the text from Snap! we cre- ;;’:’fﬂ:in
ate a variable ciphertext and display it on the stage. As content it shows the slider max...
i ...
zero. We select import... from the context menu of the displayed variable, nav- raw data._
export...

igate to the named directory and select the secret text. It appears in the vari-
able.

QETLTO ZFBMI /YSMXGG ASKZRXGR USG RSTLMT

TEG NTORUXRXNFGQTG-RTIDOXTBM VEL TEGTV VTMOZXBM

14 MTOO ILXXLIVEGEILTO USG RSTLMT, IET MXNTG KXGRYXTM([— \.67,_)26
YX, EBM MXNT QET ZFOCX, QTG RSLLMXOQ NTILETRTG! Q length of text (ciphertext
RXN Tl GSBM XGQTOT IBMATEJTO REDZTK, QET EV UTOKXFZ]

To be on the safe side, we want to save the text at another place immediately. We select the item export...
from the same context menu and get the file ciphertext.txt at the bottom-left of the window, like saving a
project. We can find it in the download directory of our computer. The described procedure is simple; how-
ever, it cannot be controlled by the program, but is executed "by hand".%®

Text files are a simple but reliable tool to exchange data between different computers. For
this to work, we need an http server (which may be the same computer if necessary) run-
ning a script that has the desired functionality - here: loading and saving text files. In this
case we want to choose the server snapextensions.uni-goettingen.de, where the script oe-tizconnsctsa
handleTextfile.php is located. We draw two costumes for a text server sprite, indicating
whether we are connected to the server - or not. The data exchange with the server should
be logged in a variable infobox. By clicking the green flag our variables shall be initialized,

where the one named connection gets a rather cryptic value.

DBE-connectad

- (text server infobox
set infobox | to ' list

set conneclion | to
https://snapextensions.uni-gosttingen.de/mysqlquery.php?sserver=db1&user=snapsxuser&password=snap!user

L — . -
set connecied | to ¢ false ¢ length: O pre—

blockify

switch to costume DB-disconnected Z:'::Tn dialog.

This consists of the server address, a login script and some varia-

3) . A . | text server connected .ﬂ J text server infobox
bles - just PHP. We change our info box to "table view" using the e e

A

context menu, which looks a bit better. The output window looks
like this:

86 But in the library SciScap! you can find corresponding blocks.

13 Texts and Related Topics 158

We need a connection to the server. This is done
using the url block, to which we pass the required
data. We log the success or failure in the info box.

connect

add to (infobox

148 url (join (connection [to 2 | —ok|

set connected | to true .

b

switch to costume DB-connected
1

add to (infobox
else

set connected | to < (@ faise

1
switch to costume DB-disconnected
+

add [H3GEES] to (infobox

After executing this block, the connection to the server is estab- (text server infobox

lished, but the text in our info box is only partially visible. We 2 itoms
therefore click with the left mouse button on the column heading L

items and drag the column in width until all text is readable. 2

We want to write data to a file on the
server. We specify the text to be written
and the file name as parameters. First, e ot e

we append the extension ".txt" to the [E&& to (infobox

file name if necessary and make sure [position of NIl in filename

that the file is stored in the subdirectory) =l0

—-

textfiles on the server. Then the url |- REERESES
| join first part of S7i[EE0

—
‘ write (text s text to file (fi

block passes the required data. |\
else

e —

set filoname | to (join ITNULTY (filename

if connected

set result | to

url (join { connection ' T ERGENES filename text

add | first part of (result ' to [length of text (result - N&P to (infobox

élse
add to (infobox

Reading from a file is done accordingly. &

| read text from file (filename = this file
We export the text server sprite to an

script variables i (result
add to G XML file and can thus use its functionality

seti |tol position of Bl in (filename in other projects as well.
if i >[
set filoname

| join FEIEY

else
N

set filoname | to { join I (filename

if ' connected
set result | to | url (join connection &type=road&filename= Nl TG

s -
add to (infobox

report il ERen] sult to gth of text (result |J “

add to (infobox

report IPIease-conneot-io-server-first!

13 Texts and Related Topics 159

After a connection setup, [B textserver connectea [T)

a write and a read opera- text server infobox

i} connection to snapexiensions [

tion, our workspace looks
something like this:

hitps://snapaxtensions.uni-gosttingen.de/mysqlquery. php?sarver=db1&user=snapexuser&password=snapluser

n;i connocted | to .l‘alse

switch to costume DB-disconnected

connect

T CNJJHSFJZAUZAMRCZUNWNYNRERNTVZERUUNVRZ TZNIGUGNCH RER {1 T
myCiphertaxt.txt

JJHSFJZAUZAMRCZUNWNVNRERNTVZERUUNVRZTZNIGUGNCH
(read text from file [N ETLEGE | E

It doesn't help, we now have to decode the ciphertext. To do this, we perform a frequency analysis - i.e. we
count how often the individual letters occur in a text. We can see from the ratios of the first three most
common characters that this is a German text.

Since in German the E is the most frequent letter and it would be mean if the text

had been written in another language, we store the list of frequencies in a variable
27 A B
frequenC|eS- 1 char frequency
2 A o4
3 B 159
4 c 48
. . (ft f_: E 5 D 40
script variables (¢ (i (result
2 et 2 6 E 433
7 F 248
8 G 570
a H 4
10 | 380
11 J 51
= 12 K 182
Initialize results list. No ' L 200
characters found yet. Z 14 M 283
15 N 113
18 o] 364
17 P 2
18 Q 269
19 R 214
20 s 151
21 T 1034
v
22 U g2
note capital
lettersonly ~# & v 131
24 W 2
25 X 303
with [
Changing =E Y 12
the counter 27 z 79
of the
character 7 oK
1 . l A

Then we try to replace the capital T in the ciphertext with a lowercase e - because T is the most common.
Our replace block is really not meant for so many replacements, so we quickly write a new one. In this new
block, we distinguish between upper and lower case in text comparisons and therefore use the Unicodes
of the characters.

13 Texts and Related Topics 160

set frequencies ‘ to "'.-frequency analysis of | ciphertext

set ciphertext | to (replace char with FJll in (ciphertext

Because the result is not too impressive, we need

—
set result |tn .
—

more substitutions. We assume an n behind the G [|=5
set i |to

and also perform this substitution.

set ciphertext | to (replace char with in/

We can look at the ciphertext quite well if we break
it down into lines with. & =)

seb resuli | to f}om { result

change i | by B

report result

QEeLeO ZFBMI /YSMXnn ASKZRXnR USn RSeLMe |3

1
< oEn NeORUXRXNFnQen-RelDOXeBM VEL eEneV VeMOZXBMen eFOSDXeEIBMen REDZeKILFeOVeO
3

MeOO ILXXLIVEnEILeO USn RSeLMe, IEe MXNen KXnRYXeMOERe NeORILeEReOEIBMe eOZXMOFnRen,

YX, EBM MXNe QEe ZFOCX, Qen RSLLMXOQ NelLEeRen! QEeleO eOMXNenen, FnUeORKeEBMKEBMen nXLFOlJenen AeOQen E

Aenn YX, AEe CSnnlLen IEe QEele FeNeOAENQen? EBM eDILEeR RXnJ XKKeEn Qen MSeBMILen REDZeK Qel (ILOXIINFOReO) V|

° XKKeV XnIBMeEn nXBM EnLeOslIEeOLen IEe IEBM NelSnQeOl ZFeO Qen RSLLMX0Q. AXOFV? |5

10 Qe0O RSLLMXOQ EIL JAXO nEBML QXI MSeBMILe ReNEOR QeO IBMAeEJ, FnQ En IXUSHeO FeNeOLOEZZL EMn QeO VSnLNK)

I XFBM En ELXKEen RENL el MeOOKEBMe NeORe, JFVXK QEe UFKCXne. XFZ Qe0O DOSZEKCXOLe IEnQ UelFU FnQ XeLnX FniB

2 QEe CFnQe eEne0 ISeNen XFINOeBMenQen KXUX, QEe ZFeO neXDeK FnlIEBMLNXO nXBM SLLXYXnS MEnFnLeOZKEelIL, OeE.J

ik ... FnQ Qen RnDZeK JF NeJAEnRsn!? |

14

XV ZFlle Qel ILeEKen MXnRel eVDZEnRen Fnl JAeE ZFeMOeO, eEn XeKLe0eO FnQ eEn YFenReOeO, NeEQel LFeBMLERe KeFLe

For example, we find words like eEn in line 2. We therefore consider the E to be an .

That was a good idea! Let's keep searching and trying substitutions, then we'll eventually find the secret!
You just have to persevere - there are only 23 letters left!

13 Texts and Related Topics 161

13.5 SQL-Databases - - -_ Veibindogaanben

[set Datenbanken |to lies Datenbanken
| wiihle Datenbank Nr. €X5
| wahle Tabelle Nr.

@

items.

Level: from middle school
Materials: SQL, SQL example

(lies Attribute von Tabelle Nr.

{ xirsche.Ema.14 |
exec SQL-command
SELECT [~ ||Name [[Vorname |[Punkte | » FROM [schueier hatiurs fkurse [« b WHERE
-
= Suly fengttil__ 7/
= GROUP BY » HAVING
e AND, >

An important IT system task is the access to external data sources. On the one hand, the Internet is available
for this purpose, and on the other hand, the use of SQL databases is common. Since the use of this type of
application is somewhat complicated in many computer languages, it is often treated separately from algo-
rithmics. This makes this subfield of computer science rather boring: you create ER diagrams on paper or
query databases with special client applications, e.g. PHPmMyAdmin, but you don't exploit the results fur-
ther. With the help of Snap! this can be done differently!

Again, we need a server running either on another computer or also on our own, and on which - in this case
- in addition to an http server and an SQL server®’, there is a PHP script called mysqlquery.php, to which
we send the data required for an SQL query for the SQL server using the parameters type, query, com-
mand, The result of the query is then either an error message or a table with results. If necessary, the
script prepares this table so that Snap! can display it as a list. The source code of this script can be found
e.g. on https://snapextensions.uni-goettingen.de.

Similar to the last section, we create a sprite called SQLserver, which indi-

(Q attributes

(Q current database
(Q current table

" (Q databases
infobox

cates by its costume if there is a connection to the database. Some attributes
like connection, connected, current table, etc. store the current state, and a
variable infobox logs what is happening. This sprite is saved as SQLserver
and can be loaded when needed.

The new blocks necessary for SQL queries are declared globally so that they

are easily accessible for queries outside the server sprite. They are stored in
the SQL blocks.xml file and must be loaded additionally. Since this is a com-
pletely different category of blocks than the ones present in the standard pal- —
ettes, we give the system a new palette called SQL, in which we place the SQL g‘::'n__
blocks.

Save
Save As_
Import...

Export project..
Export summary...

Export blocks...

Unused blocks...

Hide blocks...

New category._
Remove a category..
New scene
Add scene...

Libraries...

Costumes...

Sounds...

7 The project ,,In the supermarket “ also uses a SQLite-Server.

https://snapextensions.uni-goettingen.de/

13 Texts and Related Topics

162

First of all, we need an access
to the external SQL server.
For this we set up a block
connect. There, the local at-
tributes are initialized, and
the connection data is stored
in the variable connection
so that it does not have to be
reentered each time. Then
the connection is established
and the success or failure is
the

noted in variable

connected.

The reporter block read databases is used to
ask the SQL server for the existing databases. %
These are returned as a list. For the actual query,
only the value "getDBs" must be appended to
the connection data as "type".

The connection establishment and the selection
of a database can be saved as a block sequence.
The last block selects the specified database. In-
teresting is the small arrow next to the parame-

connect

N
set infobox

to ' list -

to list initialize local attributes

set databases

.

set iables | to ' list

. to ' list
to l

to il

connection ‘ to v

set attributes
set currenttable

current database

connection

data
e - M £

establish connection /

&type=connect’

connection
set connected

to < ftrue .
1

switch to costume DB-connected

I
add to (infobox

else

—-

set connected | to < .false
K

switch to costume DB-disconnected

add to (infobox

read databases

script variables dbs

to | url {join (‘connection &type=getDBs

set dbs | to | first part of (dbs to "Iength of text (dbs | — @

set dbs | to (split (dbs ' by

set dbs

repeat until / not
delete of (dbs

add to (infobox

report dbs

connect
set databases | to ' read databases

choose database no. ER

ter. If you click on it, a selection list with the pos-

sible values appears.

choose database no. (n# =1

script variables “result

ifC (n > longth | of databases

=1 [Ndatabaserdoesn't-exist LT {1104

else

~
set currentdatabase | to ' item (n of (databases

set result | to
url [join (connection

[_Sit currenttable | to [l

[_s:t tables

I

add (Goin FEERETY (n

&command=

to read tables

to (infobox

13 Texts and Related Topics 163

A selection list can be created in the block editor by right-clicking in the dark area. You = options

will then get a small context menu with the item options... In the pop-up window Input [= read-only

. S . = >
Slot Options the possible input options are entered. = ;‘:ﬁal >

In a very similar way, for the selected database it is deter-

mined which tables it contains and from which attributes P

‘ choose database no. 'n # =1
i g

the tables are constructed.
read tables
script variables (tbls

set tbls | to
(. . (connection
‘url join &
join [SHOW-TABLES-FROM &type-getTables 4»

set tbls | to [split (tbls by

repeat until / not

‘ delete &P of (tbls

. T —
add to (infobox

report | thls

read attributes from table no. (n# =1

Thus, with the help of the new blocks we

can find out which tables are present and
what attributes they contain. In the context
menu of the obtained list, the result can be
permanently displayed using the "open in
dialog" option. This way we can clearly ar-
range on the screen the values needed for

queries.
i m Table view Table view Table view
connect m
t datab t d datab . : 5
set databases to read databases
3 -
| Kontinent | :
choose database no. 4' . m
5] UnabJahr B
. P ER Landkuerzel
ooty 4 m
choose table no. = m

[r<ad attributes from tabie no. € 2o i 7

:
oK A

We have now created the prerequisites for issuing queries to the data- [ave(I) I max(I))

base. For this we still need SQL aggregate functions and operators. These nud B CE P

can be used to interactively compose SQL queries using the data from the

"Table views" and two types of SELECT blocks.

P >
seLecTIE M Ffrom B wHerRe | B |

setecTIEM rFrom [l WHERE crouP BY ll HAVING < X >
G e Oy CIm»

13 Texts and Related Topics 164

language = "German”

It should be noted that only the texts of the queries are gener-
‘Ianguageﬂ“@ermaﬂ".
ated by the blocks! The queries are not (yet) executed.

These blocks can now be used to create - and control - SELECT queries.

SELECT Name,Kontinent,Einwohner FROM land,muttersprache WHERE (land.Kuserzel = muttersprache.L andkuerzel AND Sprache LIKE "English")]

& land.Kuerzel Bl muttersprache.Landkuerzel AND LIKE

For the execution of such queries,
we have one - last - block available. exec SQL-command (query

An SQL command is passed to this [l ErE s T

block either as text or as the result | (fE of ‘split query by B |=

of a SELECT block. In the obtained

response list, any empty entries are |+
set rosult to

deleted. solit

url

join connection query current database
by [

repeat until. not ¢ item of (result B

delete of (result

add to infobox

report result

SELECT (what (attribs... FROM (mytables... WHERE (cond

script variables (result i

set resull | to

if - (what =

The simple SELECT block assembles an SQL
query from the parameters. It uses a re-
porter List =2 string for this.

b ~ =
| set rosult | to (join (result EEEeNY

-

hat = list (list : — string
script variables (result (i
set result | to | join (result ' list (attribs — string \
‘ set rosult ‘ to .
set i \ to

repeat until’ (i > longth | of (list' [NER

else ~
set result ‘ to join | result | list | rmy'tables — string B8 result ‘ to | join (result item (i of (list .
mange i | by &

ifC longih | of (mytables | = [

Fr:port [join (result ' item of (list

report GTH T (cond /answer

1l Aruba,North America,103000 £
With this we can start a first attempt: 2 [e -
J Netheriands Antilles,North America,217000
ecsoicommana [l American Samoa,Oceania,68000 |

|- ey B oun and sarvudaston Americaooo T
J Australia, Oceania, 18886000 |

[Banrain, Asia.617000 |

] Belize,North America, 241000 [§

J Bermuda,North America,65000
i Barbados,North America,270000 [
Bl Boupei acia 202000 B

13 Texts and Related Topics

165

With the full SELECT block it is not more complicated - only longer.

SELECT (what (attribs.... FROM (mytables.... WHERE {cond ?
GROUP BY (groupattribs... HAVING (havcond ? ORDER BY
{ orderatts... how LIMIT (n #

script variables | Tesult
s
set result | to ClHNNGY

if - ‘what = [

4
S —

‘ set rosult | to (join (result |**FROM:®| If all are meant, it does not
\] depend on further attributes. ~

e]se
if 480 = |DISTINGT -

set rosuli | to (join (result [EINGE Insert DISTINGT if
] necessary y

if length | of (attribs A

Append all attributes

set result | to | join (result ' list (attribs — string | JFal0]VQ separated by
commas Yy
if . longth | of (mytables = [q -
report [ERROR “tablesmissing! Error if the tables are missing. /
else
— _ =
set rosult | to [join (result ' list (mytables — string S
: Append tables

separated by commas 7

> >

P - Append

‘set result | to (join (result RYGISSS] (cond WHERE
N S clause if

necessary
if ¢ | longth | of (groupattribs | > [v

Append.
set rosult | to | join (result list (groupattribs — string GOUP BY
L P ———————— if
necessary
hd
. — : : Append HAVING if
set rosult | to [join (result havcond necessary y
if’ longth | of (orderatts’ | > [i] v
—_————— _ Append ORDER
‘set resuli | to | join (result JeEBIS:u:04 list (orderatts —> string BY if necessary

if 'how = v
e = sort if necessal
‘ set result | to (join (result Y 7

if

set rosult | to (join (result DEIY

? v

limit the output if necessary

set result | to .join ‘result [NYE (n

report ' result

13 Texts and Related Topics 166

We can now work with this: How many people speak which language? answer
457

set answeor | to 161 Hehet, 33517000
exec SQL-command

T - suM() 1 [land| 20 Herero,1726000
; - ROUF HAVING 470 {2} Hiligaynon,75967000
ORDER BY LIMIT / iGZ8 Hindi, 1046303000
165 Hindko,156483000
166 Hui, 1277558000
;74 Hungarian,119351100
168 Iban,22244000
169 Ibibio, 111506000
170 1bo, 111506000
171 Icelandic,279000
172 ljo,111506000
173 llocano, 75967000
i¥Z3indian Languages,20732.
175 Irish,3775100

items

Amazing!

The resulting SQL library is intended for testing SQL commands interactively and then - if successful - incor-
porating them into new blocks that allow the database to be used without SQL knowledge. We illustrate

this with a simple query.

For a new project, we first import the SQL

":-connect
blocks library, then the SQL server sprite. S Soisrier Rl 2ot datzbases Jlt@l read databases
In addition, we create an SQL user sprite. choose database no. @&

This then asks the SQL server to establish a
connection.

After that, query blocks can be cre-

| ask schueler for { cri

ated, which e.g. determine the data

report . L
exec SQL-command 7 important for school statistics.
COUNT({ criterion) v

UP BY ol HAVING <

 m.aa §
2 w.co §

. length: 2 v4

~

13 Texts and Related Topics 167

13.6 Tasks

1. A simple form of block ciphering is to insert the text to be encoded into a table with several columns
from left to right and from top to bottom. If the last row is not filled, then any characters are inserted.
The encrypted text is obtained by reading the table from top to bottom and from left to right.

Example:

THIST > TETRLREXSEYETITIDSTSINIEXTSCBCX
EXTIS

ISINC

REDIB

LYSEC

RETXX

What is the key? Realize the procedure.

3. Genetic algorithms simulate nature's evolutionary process by randomly generating new candidates
to solve a problem again and again. In this case, palindromes are sought, words that are the same
when read forwards and backwards. The procedure consists of an initialization in which a random
initial population is generated. In this case, a set of random words. Then a loop is run over and over
again in which candidates for recombination of individuals are selected based on a fitness function.
From two candidates (at least) one new one is generated. Afterwards random changes (mutations)
take place. In the resulting new generation, the "best" candidates are selected for the next run on
the basis of the fitness function (selection).

4, The determination of the Levenshtein distance between two character strings is used to determine
the "degree of relationship" of the character strings. Typically, these are DNA strands from the char-
actersA,C,GandT.

a: Find out about the process.

b: Realize the procedure.

14 Computer Algebra: Functional Programming 168

14 Computer Algebra: Functional Programming

Level: high school Materials: Computer algebra

14.1 Function Terms

We want to develop a small "Computer Algebra System" (CAS), which on the one hand illustrates the
top-down method and on the other hand shows how to program functionally with Snap! For this we have
to define what we want to understand by function terms e.g. via syntax diagrams.

Term: > Sum Y W

» Product
Product: - < > Sum _,@_
Sum: & » Summand >
Summand: » Number Y

» Potency
Number: 4

, L
Potency: :@ >
L Number I Number I

Function terms are therefore e.g.: 3 4x (2x-1)(x*2+2) (x)(x"2)(1-2x"4)

14 Computer Algebra: Functional Programming 169

14.2 Parse Function Terms

To work with function terms, of course, we need someone who
knows something about them. We therefore draw Gundolf de | xA3-3x

Jong, a talented young mathematician, and then make him | (x)(x"2)(1-2x"4)
smart. First of all, Gundolf has to be able to read in function |(2X-1)(Xx"2+2)
terms. To do this, he asks the user for an appropriate input us- XM4-x"3

ing the block ask <question> and wait from the Sensing pal-
ette. We don't use the simple form here, where something al-

ways must be entered, but we pass a selection list, from which
one of the options is chosen by a mouse click.

We move the whole thing to a method of ask for a term
Gundolf, which we define as a function. So, 55
we select the oval block shape in the block
editor. If we have declared a variable, e.g. T, cndl e

named term, then we can assign the result of [=7 g

the input to it.

set tem | to (Q ask for a term

Next, we verify that the input is correct. We move the corresponding methods into a sprite called Parser.

In this sprite we want to program functionally on the one hand, but on the other hand we want to solve the
problem in a top-down way.

We create the global block (for all sprites) is <term> a correct term? as a predicate, which accordingly
can only return the results true or false. After that we have a nice title, but unfortunately no content yet.
Nevertheless, we can already use the block in scripts - just like other blocks. On the one hand this allows
recursive operations, on the other hand it is suitable for top-down development. Since according to the

syntax diagrams correct terms are either sums or prod-

ucts, we move the problem there by creating two corre- > Sum ’ W
sponding predicates - still empty - locally (for this sprite

only), because the rest of the problem is none of the busi- » Product

ness of external observers.

Snap! now evaluates logical expres-
sions "lazy": the second expression is B Germ I e e
evaluated only if the first one does not

report is term asum? or is term a product?

already determine the result. We can
therefore specify the predicate is
<term> a correct term? completely

is term a product?

with empty block hulls.

We continue this procedure for all elements of the language
definition. The sum consists of either a single summand or a is term a summand?
summand followed by the correct operator (+/-) and a sum. We
can write this down directly if we have a predicate is <term> a
summand? that is empty for now.

14 Computer Algebra: Functional Programming 170

We have to be careful that our terms - strings - are not accidentally interpreted as numbers. For this reason,
we have always set the type of the input parameter term to "Text". If we forget this, then the string "123",
for example, could be interpreted as the number 123. The second element of the string is e.g. a 2, but
there is no second element in the number 123. A corresponding access would lead to an error.

We need one more thing. The entered term is no longer examined as a whole, but we may have to split it
into two parts: the first part of <term> to <char> and the rest of <term> from <char>. In addition, there
is the determination of the position of a character in a string: position of <char> in <term>. In this case,
we want to implement them as JavaScript methods, because time matters a bit.®

| rest of (term from

JavaScript function () {

term = term.toString();
zeichen = zeichen.toString();
if(term.length==8) return "";
else
if(term.index0f(zeichen)==0) return term.substring(l,term.length);
else if(term.indexOf(zeichen)>=8) return term.substring(term.index0f(zeichen)+1,term.length);
else return "";

with inputs £

[first part of

JavaScript function () {
term = term.toString();
zeichen = zeichen.toString();
if(term.length==08) return "";
else
if(term.index0f(zeichen)==8) return
else return term.substring(®,term.index0f(zeichen));

with inputs

wn,
El

position ;of (char - in (term

JavaScript function (Y {

term = term.toString();
zeichen = zeichen.toString();
if(term.length==8) return 8; with inputs @ m <«
else
if(term.index0f(zeichen)<®) return @;
else return term.indexOf(zeichen)+1;

With this we write the predicate is <term> a
summand? - with an additional security check.

term a summand?

term) = [}

report is term a number? or is term a potency? }

%8 For this, JavaScript usage must be explicitly allowed in the Settings menu.

14 Computer Algebra: Functional Programming 171

And now we can finally create the predicate is <term> a sum?.

Summand

v

term a sum?

term) = [i

is term a summand?
is first part of term to [l a summand? and

is rest of term from a sum?

is first part of term to]l a summand?

is rest of term from Hl] a sum?

We are nearing the end. is <term> a number? is very easy to write if you know is <term> a cipher?:

/9 is (term :a cipher?

term a number? ~ length of text () |

term =

: —_—
@ unicode of 5.5 KGR & term
@ inicode of ([ERA A term

report is term a cipher?

is letter @B of term a cipher? &&

is rest of term from 1w term a number?

And how do you check a potency? This is also in the syntax diagram - we just have to copy all possibilities
(see next page).

All that is missing now is the product, which can be formulated in direct analogy to the sum, because a
product consists of either a parenthesized sum or one followed by a product.

term a product?

term | <

term) = i

is first part of term [l to Ml 2sum? and

letter term) of term)|

rest of term from [Jill | = [

is rest of term from [Ji] a product?

14 Computer Algebra: Functional Programming 172

is term a potency?

» X

1 J
4 term)) = fi » Number Number

v

else
if

se

is first part of term to [l a number?
if not

first part of term to [

|
i rest of term from B | = [

report true .

f
else

if ot { letter of

f is rest of term from [Jl]l a number?
report true .

else

report .talse

We can use it to check ("parse") whether a term entered corresponds to the selected syntax. If this is the
case, we can continue working with it. Our mathematician Gundolf asks the Parser here.

set teem to ask for a term

<«x)
is Jlll a correct term? of Parser with inputs term

<X

He of course wraps this query in its own block to make

it appear that he himself could answer such a question.

is term correct?

report

call is [l a correct term? of Parser RYIURICK term KL

14 Computer Algebra: Functional Programming 173

14.3 Derive Function Terms

apply the rule for sums to term

We want to determine the first derivative

script variables result summand sign h

of correct function terms. We collect the [EEse ™
necessary methods from the Parser. Since | LiEis O |

there are only two possibilities for the inner S

construction of terms, the first approachis [& term) =

simple.

seth to join @ term

repeat until

derivation of term

set sign to letter @ of h

i i rd
i) term)l b set h to restof h from

report apply the rule for sums to term]
B DY i first part of h to

=014 © apply the rule for products to term J i firstpartof h to Bl J) =]

summand to

When applying the rule for sums, we have h_I
to determine the summands and derive summand to first part of h to M
them. Because we have defined numbers h to join i = -

without a sign, we treat this separately in

H n,n:
each case, i.e. we add a "+" if necessary and frstpartot b Bl) = O

then split off the sign again. Subsequently, — ()

the different possibilities are treated ac- b to join Ml =

cording to the rules of mathematics.

set sunmand to first partof h to BN

set h to join h - |

firstpartof h ol) =
first partof h to

set summand to
seth toll
else

set summand to first partof h to

b

set h to join h

set summand to derivation of summand summand

K

set rosult to join result sign summand

_

1 N E

set result to rest of result from result

|
L result)

14 Computer Algebra: Functional Programming 174

Deriving individual summands

derivation of summand summand

is not particularly difficult.
letter of summand or ¢ letter of summand

set summand to rest of summand from 1w summand

if is summand a number?

Numbers result in zero.

summand) =

The derivative of x is one.

The derivative of xA2 is 2x,

otherwise, we get n*x*(n-1).
summand rest of summand from =

. t of d
Accordingly, a factor before x rest of ‘summand_from [l

is considered (5 first part of summand to [}

report
join
first part of summand to Fl rest of summand from M

report
join
first part of summand to Pl rest of summand from

rest of summand from 1

The only thing missing is the
rule for products. We can apply the rule for products to term

simply write it down - adding

some brackets.

apply the rule for sums to first part of term T -

term)y term - N

apply the rule for products to rest of term from [Jilii

apply the rule for sums to first part of

14 Computer Algebra: Functional Programming

175

The result is even quite readable: set torm to ask for a term

if is term correct?

set dorivation to

call derivation of [l of Parser

with inputs term

Gundolf term [e @l =l) (550 T2 G)|

eI Te S R T L1) (9X A 2-4X)(1-2X-3X ~4)+(3X"3-2x2+34)(-2-12X"3)

Note that the derivatives do not necessarily correspond to our highly simplified definition of function terms

and therefore often cannot be "processed" further.

14 Computer Algebra: Functional Programming 176

14.4 Calculate Function Values and Draw Graphs

If we can parse function values, then of course we can calculate them. The procedure is quite similar to
parsing, and it is made much easier if we already know that the entered term is correct. We leave this work
to Gundolf, who was actually quite useless up to now - except for the self-representation. As a mathemati-
cian he should be able to calculate!

We want to calculate function values and then draw the graphs of the function and its first derivative. For
this Gundolf must be able to draw at least a graph.

draw a coordinate system .
draw graph of term with color color

o Ea N script variables xp x Yy yp

hide variable derivation clear screen 7

tell Parsor to hide ’switch to costume pen
set size to %
set pen color to . h

In these scripts all [|-oa80s 2200

|

blocks are already || Litde S0)
go to x: @ v: G = present - except of calculate term (x)
pen down y-axis y one. The calcula- [FEaas L0070
go to x: @ y: tion of a function || @l
go to x: y:
go to x: y:

go to x: @@ y: GED

term at the position set pen color to

x is still missing. We =

give the corre-

pen up set pen color to
go to x sponding scripts
pen down D y without comments if color =
go to x: v: @ because they are set pen color to
- 1
oD TE y: very similar to B
set pen color to

go to x: v: those of the parser.
go to x: v: @ }

_pen up

o to x: ‘x| A
gotox: €D v: €D = 9 T
pen down
scaling 7 e

go to x: @ y: €D

change xp by
(3

set x to xp / @&D
gotox: &P v: @ Be

. calculate term (x)
scaling y

go to x: @D v: &

setyp to y x ED
L

go to x: ‘xp y: yp

L
switch to costume Gundolfleft
.

set size to %

14 Computer Algebra: Functional Programming 177

calculate term

Il 2 sum? TR with inputs (200 <

report calculate sum term (x)

report calculate product term (x)

calculate sum term (x#) calculate summand term

script variables summand rest pos+ pos- script variables number exponent sign

term) < set number to [i]
set oxponent to E

set sign to letter @ of term

set tom to rest of term from

if term) = [§

set torm to j§

set pos+ to
length of text

rest of term from e

with inputs term

set pos- to
length of text
rest of term from 1w term - |

set pos: to [REEE

first part of term to M

set number
& pos+ > pos-
set summand to

€ term

join
rest of term from 1w term -]

else
set number to first part of term to Pl
s

if rest of term from P

set rest to
join B rest of term from 1w term - |

else
if pos+ = pos-

set oexponent to

to rest of term from

set summand to

set rest to
n (S A number X 1 x exponent

report - % {{ number x “ exponent J

set s

term

join
Li rest of term from 1w

set resl

join rest of term from S - term

report calculate summand summand (x)

else

calculate summand summand (x) +
report
calculate sum rest { x)

calculate product term

is Il a product? of Parsor

with inputs (-8 0)

calculate sum first part of term Ml ol (x) x

calculate product rest of term from [l (x)

rt

calculate sum first part of

14 Computer Algebra: Functional Programming 178

With their help Gundolf can shine now:

when clicked
clear

set size to %
set tom to .

set dorivation to .

go to x: GED y: €

set term to ask for a term

o call is lll a correct term? of Parser with inputs @ <«

draw a coordinate system

[

draw graph of term with color
L

set dorivaiion to

call derivation of [l of Parser |With inputs term

Il = correct term? of Parser inputs derivation

draw graph of derivation with color

Thederivationtis*not*of*the*givenssyntax.*lI*cann't*draw-it.

CEVE Thattis*notraccorrectiterm. Tryagain. {1 § 9 secs

show variable term

show variable derivation

go to x: @&ID y: EID

Gundolf term [p &< Pors & Gl |

The derivation is
not of the given
syntax. | cann't

draw it.

[c[T]yle (]} e CLATETTT B (3X A 2-3)(2-2x-x"2)+(x " 3-3x)(-2-2x)

14 Computer Algebra: Functional Programming 179

14.5

1. a:
b:

2. a:
b:

3. a
b:
c:

4.

5.

6. a:
b:

7.

Tasks

Make the outputs a little more readable.
Combine results in the derivation so that they correspond to the given syntax and the graph can be
drawn.

Define signed numbers and change the processing of the terms accordingly.
Proceed accordingly for floating point numbers (numbers with decimal points).

Define advanced function terms, which can contain quotients, using syntax diagrams.
Enable parsing of these function terms by writing appropriate predicates.
Form derivatives by implementing the quotient rule as a string operation.

Perform task 3 accordingly for trigonometric functions.

Allow function terms that require the use of the chain rule. Implement appropriate predicates and
string functions.

Let the graphs of the other function types draw after they have been parsed.
Allow a selection of the graphs to be drawn (function, first and second derivation).

Introduce a "function calculator": a function term is entered first. If this is correct, values can be
entered repeatedly, and the corresponding values are determined.

15 Artificial Plants: L-Systems 180

15 Artificial Plants: L-Systems

Level: high school Materials: L-systems

- -

create the drawing instruchtion
draw

set rules to list
add to rules
add to rules
set dopth to []
set angle to
set longth to

+bo

set les to list
add to ‘rules
add to rules
set dopth to
set angle to prNY
set longth to

set rules to list

add to rules > ¢ @
set depth to A
-
numbers from P to set anglo to Py

set longth to

15.1 L-Systems

In systems according to Aristid Lindenmayer®?, plants are described by a rule system that generates the
drawing instruction for a turtle from an axiom, a first character, by substitutions. One can imagine it in such
a way that - starting from a shoot - the plant is drawn up to the next branching. Its position is stored on a
stack, then the branches are described one after the other, returning to the branching after each branch.
The turtle can only move forwards (F) and rotate through a fixed angle (+ and -). Saving the turtle position
and direction and restoring this state is symbolized by square brackets ([and]). A simple plant with a triple
branching can be described by

Axiom: X Rule: X 2 F[-X][+X]FX

If this rule is applied several times, then the plant can grow at the positions where an X has been
inserted. So that the older parts of the plant grow along, a rule F = FF is often inserted.

8 https://de.wikipedia.org/wiki/Lindenmayer-System

15 Artificial Plants: L-Systems 181

15.2 Create the Drawing Instruction

First of all, we need a rule system, i.e. a list variable rules, to set rules to list

which the desired rules are added line by line as character strings.
add LSRR to ‘rules

The character to be replaced is at the very beginning, followed
by "->" and the replacement starting with character 4. The re- et RSl UL

cursion depth, the given angle, and the length of the line length |- S GET 21 6
(for F) are also assigned to variables. set angle to

set length to

create the drawing instruchtion
script variables h i k hit When generating the drawing in-
struction, we start with the axiom

t instructi to)4 ™
set insinotion_ to X. Then we create an auxiliary
repeat depth

ol string h in which the replacements

set h
K

seti to are performed per pass: whenever

e A] a character to be replaced is found

set hit . to (@ raise in the old drawing instruction, we

(set k tofl append the substitution to h. Fi-

repeat until. k > longth of (rules nally, h replaces the drawing in-

item K of (rules’ § = i Y7 instruction struction, and the next replace-
ment pass is started. The result

can become quite long!
item (k= of (rules letter @B of item ‘k of (rules

3

set hit to true .

L
change k by

84259
(length of text instruction
if not hit

set h to join h i instruction

=

change i by &P

set instruction to
_

15.3 The Stack Operations

As a stack for storing the turtle positions

we use a simple list. Operations are exe-
cuted only at the beginning of the list - push postion

already we have a stack. The storing is
i insert x position) y position]| direction at of (stack
usually done by an operation push. We
store a three-element list with X- and y-
position and the current direction. By pull position
pull the last stored position is retrieved | =2 s o

and removed from the list. = of (stack

delete of stack

report p

15 Artificial Plants: L-Systems 182

15.4 Drawing the Plants

Drawing the plants is very easy, since all

draw

our sprites can be used as turtles. We

enlarge our stage to 500x500 (select [ki il s

warp

stage size... in the settings menu) and let |5
the Turtle draw the "foot" on which the | Risde= v

b clear Draw the “foot" and take the starting position. 7

plant grows. We then step through the || SR
string of drawing instructions one char- | JEERSES y:

pen down
\

acter at a time, performing the appro- sct pen size to @

priate Turtle operation or stack opera- [FETre -

tion for each character. As a little gim- [[EERSES 0 B'E
set pen size to P

mick, we draw the "tips" of the plant in
point in direction @i

green. (Tips can be recognized by the [{F5 tofl

fact that the next step is to go back to ||~ = 4 -

All characters of

the last turtle position, i.e. a pull opera- N EFE [characters
are processed.

tion follows).

A

Perform the

=8 appropriate
operation

turn (2 angle degrees depending on the
character. Y

Examples:

set position to pull position

L

go to x: item of (position y: item @B of (position
|

point in direction item of ' position

if €01) 1 length of text (.-« (11 v

Colour only the tips green. Yy

set pen color to

set rules to list if Ietterofm =M
add pSSCR G OIROoH to rules set pen color to

set depth to else

set pen color to
set angle to

.

set length to pen down
3 . s

move (length steps
'/,) . .
Z. pen up

change i by @D

set rules to list set rules to list

add to ru add [ESERAEEIEY to (rules
add to ‘rules add to ‘rules

set depth to [§ set depth to
set angle to set angle to
set longth to set longth to

15 Artificial Plants: L-Systems 183

15.5 Tasks

1. a: Searchthe web for grammars for L-systems. Create the appropriate plants.
b: Select a plant species, e.g. a certain tree species, and study its construction thoroughly using pic-
tures. Pay particular attention to growth areas. Then describe their structure using an L-system
grammar. Check the result using the program.

2. a: Why are the grammars considered so far "context-free"? What does this mean for the plants pro-
duced??
b: Check the web to see if grammars other than context-free are used to describe artificial plants. If
yes: why actually?

3. a: Inthe program the tips of the branches (as "leaves") were dyed green. Replace these green pieces
with more beautiful leaves.

b: Transfer the principle to drawing the thickness of the branches. Just come up with something! @

4, Plants don't always grow the same: there are storms, raging children, hobby gardeners, weather
disasters, ... Bring some randomness into play to produce differently shaped plants of the same type.

5. a: The stack operations were always performed at the top of the list. Could one also take the end? If
yes: why?
b: Would something change if you insert at the beginning of the stack and remove the positions at the

end? If yes: why?

6. The users of the L-system program can enter anything else as grammar. Check their entries with a
parser before trying to create the plant.

7. a: How would the rules for L-systems be changed if we wanted to create three-dimensional plants?
What did this mean for the drawing of the plants? Are there turtles for three-dimensional drawing?

b: Find out about topics where artificial plants are used on the net.

8. Do they also draw artificial animals? Artificial people? If yes: where? How do they do that?

16 Automata 184

16 Automata

16.1 Correct Mail Addresses

Level: from middle school Materials: Email addresses

We want to use a finite automaton to check whether a mail address is correct. To do this, of course, we first
need to know what "correct" means. We give a syntax diagram:

Mail address:
TR O+OTO—~0—0—

In this simplified form, the usernames thus consist of the characters a and 1 (as substitutes for letters and

special characters) in mixed order, then the usual @ follows. The mail server name consists only of bs, and
- separated by the dot - de follows as the domain name.

Correct email addresses are e.g. a@b.de ala@bbb.de, wrong would be e.g. 1@c.com.

Translated into a finite automaton, we obtain its state diagram (the input characters are enumerated on

the edges of the graph with spaces as separators):

al b

al@b.de

The translation into a Snap! script can well be done as a predicate because the response of the automaton
is true (the final state Se was reached) or false (another state was reached, typically the error state S). In
the script the checked address is stepped through character by character. Starting from the initial state So,
it is checked whether the current character is valid. If this is the case, then the script switches to the next
state specified in the state diagram, otherwise it switches to the error state. The script is quite long, but
consists only of nested alternatives, which are a direct translation of the state diagram.

16 Automata 185

When checking the mail addresses, the created predicate can

is address correct?

then be used.

script variables state i

set state to Eﬂ
set i to -

repeat until i > address ES 1a@bbbb.de cnrrea?

set ¢ to letter i of address

set state to
else

set state to

set state to

set state to
else

set state to ﬂ

set state to
else

set staio to E

set stato to

set state to
else

set state to

set state to
else

set state to

set state to @

set state to

else

set state to

change i by €D

report state = [

16 Automata

186

16.2 Hyphenation: Kevin Speaks”®

Level: high school Materials: Kevin speaks

Mealy automata can be used to im-
plement simple hyphenation, which
works surprisingly well. In addition,
we want to get the sprite Kevin to
pronounce the words we input. The
second sounds harder than it is: if we
have the syllables, then for each sylla-
ble we can create an image with the
mouth position whose name corre-
sponds to the syllable (e.g. AU.png)
and record the spoken syllable to it
(e.g. as AU.wav). We drag these files
to the Costumes and Sounds areas
of Snap! and call them from there.

We start from the very simple Mealy
automaton shown here. Its input al-
phabet consists of vowels (v), conso-
nants (k) and other separators (t). It
inserts some hyphenation characters,
but of course it works incompletely
and partly wrong. It separates the
character strings vkv into v-kv and
vkkv into VK-kv.

Using ask and wait, we enter words,
which will then be hyphenated. Since
users of programs never follow the
guidelines, we first make sure that

./
P&t

BN

k/ 2
t/kt
k/
Start v/ k-kv v/ kv
v/v
t/t t/t
viv

only uppercase letters appear in the word. To do this, we must be able to convert at least a single character

to uppercase if necessary. We have already written the function for this in the Vigenére encoding, as well

as the one for the conversion of whole words.

A word transformed into uppercase can be similarly transformed into a sequence of the characters v, k and

1. The vowels are very easy to find, the consonants are letters that are not vowels, and the rest are treated

as separators. For practical reasons, a t character is added last. Thus, there is always at least one character

- and we always reach the state O last in the automaton.

70 Based on an idea of Wilfrid Herget.

16 Automata 187

translate word to v-k-t-sequence split vkt word

script variables result i script variables state result i

set rosult to . set siate to m

set i to set i to

repeat length of text word set rosult to l

set ¢ to letter i of word repeat length of text word

set ¢ to letter i of word

set resuli to join result
set state to

else

if unicode of c 1) and ¢ unicode of ¢ set result to join result c

set resuli to join result [
else
set rosuli to join result

set state to

change i by €D
=

set result to join result
report result

set rosull to join result «c
Now we hyphenate. We read character by character of the se-
quence from the characters v, k and t and write down our autom-
aton: Depending on the state, we specify which next state is
taken and which characters are output. set state to

Finally, we have to transform the vkt sequence back into the orig-
inal characters - with the separators in between. To do this, we
run through the vkt sequence with the separators (index: i) as a set rosult to join result [B
template and build the result sequence from the characters of

the entered word (index j). However, we change j only if i does -

. . t rosut to joi It
not point to a separator (-) in the pattern. | =EE .

create splitted word from template template

set sitato to

script variables result
set rosult to join result

set rosult to i =
seti to
setj to

repeat length of text template coul . A I G

if i template

set rosult to join result N

set rosult to join result [T

change i by
set result to join result

3

change | by

report result

change i by

report result

16 Automata 188

We can now use these blocks step by step to hyphenate a word:

script variables pattern

= 8 Enterrasword,*i'lI*sayeit*(if*l*can). lE L [BT ETT S

set pattern to change answer | in capitals
set pattern to translate pattern to v-k-t-sequence
set pattern to split vkt pattern

set splited to create splitted answer from template pattern

And of course, we can combine such sequences of statements in a new block.

split word

create splitted word from template

report split vkt [=1 == change m LICELT c ER o v=k=T=Sequence

The words broken down into syllables are to be pronounced by the computer, similar

c

= " Kevin
(1 L .
Scripts Costumes Sounds

we store syllables instead of whole words, we need much less memory, because the — meusme oo

by aragging it into nera

to navigation systems, automatic time announcements or other "computer voices". If

syllables can be used several times. (But it does not make it more beautiful!). e
0:01
First, we choose some words: e.g. autobahn, autonomous, automaton, pronoun, pro- =
mille, camomile, camel, cactus. We record their syllables in the recorder of the
Sounds section and change their name to the syllable's name in capital letters. g
Since the entered words were provided with separators (see e
above), we get (roughly) the syllables when we "split" the 1m' =

word. For this purpose, Snap! provides the split by command.
The block generates a list of word parts. If we enter AU-
TO-BAHN and hyphenate at the

- y
" character, we get: NS AU-TO-BAHNE 72 - | i

Since our sound files are named the same as the syllables, we can play them with play 0:01
sound until done by choosing the syllable as input parameter of the block. -

for each (syllable in split by BEd N A

play sound syllable until done o

So, we can make the computer speak out words by

e hyphenate the word entered,
e and break it down into its syllables,
e and have the syllables of this list "pronounced" one after the other.

16 Automata

189

For each of the different syllables we draw a costume for Kevin.

TO BAHN
We display these costumes while speaking the syllables.

Words are pronounced by calling this script with the corresponding syllables.

speak word

script variables syllables splitted word

set splitedword to split @in capitals

set syllables to split splitted word by BE4

for each 'syllable in 'syllables

switch to costume syllable
g

play sound syllable until done
>

switch to costume NORMAL

16 Automata 190

16.3 Coupled Turing Machines 7

Level: high school Materials: Coupled Turing adder

If one describes Turing machines by state graphs, then the importance assigned to this model seems to be
strongly exaggerated to the learners, because the problems, which can be described by a still readable
graph, are then nevertheless rather small. Much more powerful tools can be generated in the model of
coupled Turing machines, where the initial state of the next machine corresponds to the final state of its
predecessor. From very simple systems, increasingly powerful constructions can be created. A kind of
macro-language emerges, in which topics of computability and decidability can be formulated, but above
all can be experienced enactively.

Our system of elementary Turing machines works on a Turing tape which contains only ones and zeros.
The zeros serve as separators, so that numbers are to be represented by sequences of ones. The number n
is coded accordingly by n+1 ones, so that also the zero has a code. In the standard position, the head of
the Turing machine is above the one furthest to the right. All groups of ones must be separated by exactly
one zero and there are two zeros at the left edge of the tape. After working, the machine is again in the
standard position. From this position the next machine starts its work.

The 1- and 0-machines are available as elementary machines, which write the corresponding character
on the tape at the head position. Apart from that, they do nothing. The small left machine | shifts the head
of the Turing machine one position to the left, the small right machine r to the right. In addition, there is a
checking machine p, which checks which character is present at the current head position. Depending on
the result, it branches into one of two states, to which further machines can then be coupled. That was it.

Because they are often needed, we design two new machines, the large left-hand machine L, which runs
to the left across a group of ones, and correspondingly a large right-hand machine R. These can be im-
plemented as follows.:

L: Ipip R: rpi;
T O

The copying machine K1 copies a group of ones to the right.

K1: L 1 J
p—»ORRI1ILL1I

o,
RRI

If the copying machine K2 copies a group of ones over a second one to the right, then we can already
calculate sums with the help of a Turing adder A.

A:K2K2L1RIOIOI

Try it for yourself!

1 based on Eckart Modrow, Theoretische Informatik mit Delphi, emu-online, 2005

16 Automata 191

Instead of testing the machines on paper, we want to develop _ New Cat 1

a macro language that can be used to generate our coupled Tu-

Blocks catsgory nams:

ring machines. Since we only want to use new Turing blocks

to be developed, we introduce a new category for this - in taste- Turing blocks] —
ful pink. ox cancal [l]
For the simulation of the machines, we need a working tape, woro st
which is built from ones and zeros. We choose a list called tape 0
for this, since it can be easily changed in length. For the display, we create some images with ones o2
and zeros of different sizes, using the yellow versions to indicate the head position (pos). The E
working speed and the cell size (cell type) should be changeable on the screen. Altogether we =
need the variables tape, max tape length, pos, cell type und pause(ms). 0
The initial caption must be requested -
and then a corresponding band must enter . initial labeling m

be generated and displayed. We do

script variables i
this by splitting the input string char-

switch to costume Turtle
go to x: y:
=1 Qinitial-labeling? IEL R TS

set tape to append 00 split answer by [Eihd

acter by character into a list. In front
we append the required two zeros,
and we fill up the band with zeros up
to the maximum length, if necessary.

repeat until length of ‘tape > max tape length

add [J to ‘tape
On this tape, the standard position
must be taken, determining the value go to standard position
of the variable pos, which indicates : . =
script variables i

the position of the head. We search,
warp

set i = max tape length
.

change i by

starting from the right, the first one.

[

set pos to o

16 Automata

192

Then the tape is
displayed by stam-
ping images of the
costumes side by
side on the stage.
To the
head position, we

display

calculate its screen
coordinates and
change to one of
the vyellow cos-

tumes.

In total we get as start command sequence:

show tape

script variables i

clear

L

go to x: v: @
L

to

repeat until

set i
b

if QR

-1

switch to costume

if cell type

switch to costume

-0

switch to costume

if cell type

switch to costume

x position | >

of tape

show head

-0
230 1o 10 |

if cell type

v: @

go to x:

pos - @D

go to x: =P + pos — &P

r

if item (pos of (tape =[]

if QR |

switch to costume zoro-actual-1

zero-1

zero-2 switch to costume zororactual-2

i celltype =fl

one-1 switch to costume one-actual-1

one-2 switch to costume one-actual-2

b
% celltype =l

move @[P steps

move @P steps

by @D

change i

show head

¥

show
K

pause(ms) / @) secs

wait

enter initial labeling
go to standard position

The elementary machines can now be created quickly:

if pos >[1

change pos

by €GB N if

replace item (pos of ‘tape with [i]

switch to costume zoro-1

cell type =

switch to costume one-2

show head

if pos < max tape length

by

change pos

show head

replace item (pos of (tape with []

switch to costume one-1

switch to costume one-2

show head

16 Automata

193

The generation of the test machine p is somewhat
more complicated because this must be able to ex-
ecute two different scripts - depending on the tape
labeling. These scripts must not be evaluated
BEFORE the call of the machine as parameters, but
two scripts are passed, which are to be executed
AFTER the call depending on the tape label. The
"parameter values" are therefore scripts. When
typing the parameters, we select Command (C-
shape) to prevent evaluation. The parameters are
marked as scripts by a A.

The downward arrows after the zero or the one can
be found in the selection list that appears behind
the small arrow after the name of "Title text" pa-
rameters.

The new block, a control structure,
then has the following appearance:

We now want to build our coupled Tu-
ring machines from these new blocks.

Turing blocin

In order not to be tempted to use the
standard blocks, we right-click on a "=
palette (hide blocks...) and select all
blocks except our new ones. The

standard palettes are then empty.

M go to x: o y: o
M go to random-position

0 Singloinput. | >

T T r——

[————————

oK Delete Cancel

p 0: | ' scriptO A | ' scriptl A

item pos of tape

Soripts Gostumss Sounds

Hide blocks in palatte
[move steps
M turn (t degrees

M turn 3) degrees

M point in direction

M point towards mouse-pointer

M glide secs to x: @ y: @

M change x by

&
g

o
8

oK

16 Automata 194

With these machines, the others can be developed "quite normally recursively" in Snap! as blocks.

:
3

The work of the machines can be followed on the screen at different speeds and thus checked. Afterwards

they are used as new blocks for more complex problems.

o max tape length ({171

P

r— « w ceityee JENN
o
enter initial labeling JESAMM when clicked P"""(:)

go to standard position

enter initial labeling
go to standard position

show tape

ofol1]1f1f1]1]of1{1]1]1]0f0f0ojO]O]O[O[0]O]O]|0]0O]

=t

show head

"iﬁﬁﬁiiiiﬁ'ﬂiil

16 Automata 195

16.4 Cellular Automata: Iterated Prisoner's Dilemma’?

Level: high school Materials: Cellular automaton

We want to build a cellular automaton based on the Prisoner's Dilemma’3, but slightly modified for trading
on the Internet. The behavior of the trading partners is simulated by automata, which sit on a grid closed
in both dimensions and trade with the partners within a Von Neumann neighborhood’. They exchange
goods for money - as is common on the Internet. There are different types of business partners:

¢ Naive always cooperate, i.e. provide the correct equivalent value.

e Fraudsters never cooperate.

e Shrewd people cooperate at first and then react in the same way as their partner did last time.

We describe the behavior of trading partners using state diagrams:

K,K v B,K K,BvB,B K,K B,B

K: cooperate ‘ ' '
. B.K
s OO0
K,B

The "naive" The "fraudster" The "shrewd"

If we arrange such automatons in a grid, distribute them randomly and color them according to their state
(green as "naive", red as "fraudster" or yellow as "shrewd"), we get an image similar to the following:

generation)
(9 o B

72 based on Eckart Modrow, Zelluldre Automaten, LOG IN 127 (2004)
3 https://de.wikipedia.org/wiki/Gefangenendilemma
74 https://de.wikipedia.org/wiki/Von-Neumann-Nachbarschaft

16 Automata 196

The further procedure is simple: First all partners trade once with their neighbors from the Von Neumann
neighborhood, i.e. with the neighbors above, below, left and right. Afterwards all partners evaluate the
success of their neighbors. As opportunists, they take over the status of the most successful neighbor or
maintain their status when they were better themselves.

In the first generations, the "fraudsters" usually prevail. But then clusters of "naive" or "shrewd" people
form and a wild "battle" begins.

i i .
(generation (NN) (generation (TN)

eneration)]
(o [13 P

fl
T -

It is true that the "naive" are hard pressed by the "fraudsters". But they do quite well in groups. The
"shrewd" usually prevail over the "fraudsters" - depending on the configuration - and cooperate with the
"naive". In the end, the "shrewd" usually win - but not always. In groups, the "fraudsters" cheat each other
and win nothing, while the "shrewd ones" assert themselves against them and are more successful with the
"naive behind their backs". The processes depend strongly on how the different behavior is weighted.

Global variables are suitable for evaluating the system, e.g. a "gross national product" as the sum of all
trading points. Observing the sometimes surprising processes provides starting points for discussing ethical
questions. Even if the example cannot, of course, be directly applied to social systems, for most people we
have found a new argument for cooperative social behavior, which is not derived from transcendental or
philosophical considerations, but from efficiency. It is in clear contrast to the egocentricity of primitive Dar-
winism, which often dominates public discussion in this respect. A diagram may serve as an example in
which, on the one hand, the total numbers of the three types of automata (naive, fraudulent, shrewd) were
plotted, and, in addition, the sum of the total trading points achieved by all types, i.e. the "gross national
product”, is somewhat thicker in blue. One can see very nicely that "social prosperity" (if one wants to
derive this from the "trading volume") is contrary to the number of "egoists" - of course under the condi-
tions set. Among them, fraudsters usually die out for lack of success, and the naive harmonize magnificently

16 Automata 197

with the shrewd - if they are among themselves. If the behavior is weighted differently, fraudsters can be
quite successful. So, it depends on the rules of the game who succeeds. You should think about them, not
just in a simulation!

From a programming point of view, the system is rather simple, but sometimes extensive due to the change
of viewing direction.

A new automaton can be described by

new automaton

a list of lists, whereby the automatons
at the grid places correspond to se- | logfie it e
quences of numbers, which contain

on the one hand their state and the an automat is described by the list

. . - (state, new state, points, top,
reached trading points, on the other || G L RIS bottom left, right). The last four

repeat nMax values include the behavior of the

hand the "memory" about the past neighbors on the last move. y

behavior of the neighbors. set row to list

to

16 Automata

198

The cellular automaton can be dis-
played by stamping different colored

show automaton :

costumes (small rectangles) next to | st o0

each other on the work area. This has
been changed to the size 800x600 pix-

els before.

Once the machine has been created,
the new generations are created from
the last generation in each case.

forever

| delete points

Pall are trading

| all change state
show automaton
5

| cout states

change generation

clear
"

pen up
.

sety to
(3

repeat nMax

set x to
K

set state to item of
L

if state =

item 'y of automaton

switch to costume naive

switch to costume witly

switch to costume cheater

go to x: BED + E&LP

l stamp
change x by
L

|
change y by €D
>

The scripts have a very similar structure: all grid locations are iterated.

all change state

script variables x y

sety to
repeat nMax

set x tofl
b

cell x y changes state
b

change x

L.

sety to
s
repeat nMax

set x tofl
.

replace item of
item (x of

change x by @D
-l

change y by @D
_*

delete points

script variables x Yy

sety to
repeat nMax

set x tofl
b

item (y of (automaton
change x by @D
>
change y by @D
>
all are trading
script variables x v

y of automaton with sety to
L

automaton repeat nMax

set x to
{

cell x vy trades with neighbors

change x by
>

change y by @D
>

16 Automata 199

The trade of a cell with its neighbors depends on the one hand on the states of the partial machines, and
on the other hand on their previous behavior. Since this data is stored in the machine values, it is easy to
retrieve. Shown is the trade with the left neighbor:

cell x # y # trades with neighbors

script variables
xp yp cell neighbor neighborCooperates cellCooperates

determine cell " irdie CETLE ¥ automaton
set yp to

set xp to x —o v
Torus world: the opposite edges | left neighbor

are connected. || "SS)

set neighbor to item xp of automaton

find neighboring cell
set celiCooperates to

item @R of cell

is the cell cooperating? item of cell = item @B of (cell =
set neighborGooperates to
save neighbor's behavior "for item of neighbor or
later” item of ‘neighbor = item of ‘neighbor

if neighborCooperates

replace item @R of (cell ' with
else

replace item @R of ‘cell with [i]

if they both cooperate:

if cellCooperates
prOﬁt between 2 and 10, 1 neighborCooperates

nothing else replace item of (cell with
item of ‘cell '+

the neighbor is cheated:
profit between1and 20 | f

replace item of (cell with
item of (cell '+

cheat on both of them:

replace item of ‘cell with
almost no profit item @ of (cell +

Trade with the other three neighbors is almost the same. The differences are only in the positions of the
stored behavior.

16 Automata

200

Once the values of a generation have been determined, they can be counted and compiled in a list - and

this results in a diagram.

cout states

script variables n

set n to[f]

s

sett tofi]

b

set b to[)
8
set g tof)
8
sety tofl
8

repeat nMax

set x to
K

set state to item of

if state =

change n by @D
else

if QEcICHE

change t by @B

change b by @D

8

change ¢ by item of

change x by @B

to (table

34 A B C

i Naive TitForTat Cheater
2 489 428 1583
3 320 428 1752
4 243 485 1772
3 177 589 1734
6 161 684 1655
7 130 786 1584
8 125 882 1493
9 103 993 1404
10 119 1133 1248
11 118 1281 1101
12 121 1394 985
13 143 1478 879
14 158 1577 765
15 168 1673 659
16 193 1741 566
17 224 1756 520
18 219 1790 491
19 247 1792 461
20 268 1796 436

oK

item 'y of ‘automaton

item 'y of ‘automaton

overall
45677
26541

18849
16254
14581

14178
13819
14482
14636
16092
17108
18450
19548
20786
22002
23629
24887
26267
27174

draw diagram

script variables i values oldValues
clear

set pen size to §P

set pen color to

pen up

go to x: ¥:
pen down

go to x: ¥:
go to x: y:
seti to

set oldValues to item of ‘table
repeatuntil. i > lengih of table

set values to item (i of ‘table
g

set pen size to P
g
set pen color to
e
pen up
go to x: @LP + i - & y:
250 I @& of oldValues 5

g
pen down

go to x: @LP + i -
250 I @& of (values 5

g
set pen color to
.

| pen up
go to x: @0 + i - y:
EED + [item @B of (oldValues 5
:pen down
go to x: @0 + i -

FED + [item @B of (values 5
\

set pen color to
.

| pen up
go to x: @0 + i - ©®

EP + [item of oldValues

.
| pen down

go to x: @0 + i -

B + [item B of

b

set pen size to &P
s

set pen color to
g

pen up
\
go to x: @LP + i - &

250 I @ &N of oldValues

g
pen down

go to x: @LP + i -

250 I @& of (values
e
set oldValues to

>

change i by

16 Automata 201

16.5 Tasks

1. Develop a finite automaton as a predicate for detection
a: correct license plates from three different cities.
b: correct IBAN numbers. You can limit your search to a few banks.
c: passwords of sufficient complexity. Define beforehand what "sufficiently complex" means.

2. Improve hyphenation by taking into account
a: double consonants.
b: typical prefixes.

3. Develop and test a coupled Turing machine,
a: that copies one group of ones over another (K2).
which pushes one group of ones to the left to another until the groups are separated only by a zero.
which multiplies two natural numbers with each other.
which writes a 1 after two groups of ones, if they are the same length, otherwise a zero.

m o 0 T

that subtracts two natural numbers - if that's possible. If she doesn't, she'll go crazy: she'll run away
to the right.

4. a: Replace the trade of all partial automata with the neighbors "per round" by a randomly controlled
process in which machines trade with neighboring (with any) partners.
b: Replace the Von Neumann neighborhood with a Moore neighborhood.
c: The machine can easily be converted to an Ising model by considering the machines as spin grids.
Per round, the majority of the neighboring spins tilt the spin in the middle in their direction. There
are various magnetized areas.

5. a: Find out about Stephen Wolfram's linear cellular automata.
b: Implement the model.

17 Projects 202

17 Projects

17.1 LOGO for the Poor

Level: from middle school Materials: LOGO for the poor

We want to develop a small programming language that we can use to write programs for a turtle - that is,
for every Snap! sprite. The project should show how a text-based language works and how the error mes-
sages are generated. We reduce the problem a little by allowing one-letter commands only. If we look at
the possibilities of the pen used in Snap! and select some of them, we get a possible command set (very
small here):

Mn moves the turtle by the distance of length n in the current direction
Tn rotates the turtle on the spot by n degrees

U lifts the pin

D lowers the pin

We add a control structure to these four commands, here: a loop - and the minimal version of a program-
ming language is ready.

Rn{ drawing commands }

We cast this rough sketch in the form of syntax diagrams: A turtle program consists of a sequence of com-
mands separated by semicolons. The program ends with a double cross sign.

control instruction J #@—>

drawing command

\ 4

turtle program: 7y

\ 4

Y
O/

control instruction: —»@—r number —»@A‘ control instruction —»@—b
4@4—

drawing command:

number

RO
(1] number >
SO
O

number: natural numbers

Programs are e.g.: D;R4{M100;T90};U#
M100;T90;M100;T90;M100;T90;M100;T90#
D;R180{M200;T183};R360{M1;T1}#

We assume that superfluous characters such as spaces are removed from the program first. We can achieve
this, for example, by converting entered lowercase letters into uppercase letters and allowing digits and
the four special characters ";", "#", "{" and "}". All other characters lead to the error message "ERROR 1:
Wrong character in the input!".

17 Projects 203

So, we write a simple input

get command

method with character control.

script variables input result i

ET @ Enterasturtlesprogram! EL T RVET]
set input to answer
set result to i

seti to

repeat until

unicode of i input
lowercase letters 7
unicode of i input

set rosull
join

result letter i of input

unicode of i

. = uppercase letters
unicode of i 4

set result to join result

unicode of i input

unicode of i input

set result to join result

-

four spaecial letters 7

set rosult to join result
else
L EETIE < 8 ERROR-1 “Insufficient:characterin-thesinput!

set i to length of text input

change i

report result

The input must be checked to see
whether it represents a permitted
LOGO program - it is "parsed". In
this case we can develop the par-
ser as a finite automaton”. The
unspecified transitions lead to an
error state.

7> Why is that, by the way?

17 Projects

204

In the individual states we can decide which

signs lead to subsequent states and which do

not. This allows us to indicate which characters

were actually expected in the event of incor-

rect entries. If we number these error mes-

sages of the parser in the order of their occur-

rence, we get the adjacent table. If we also

evaluate the position of the character in the

command where the error occurred, then we

state possible error message
So, Se 2: unknown command
S1, S10 3: <;> or <#> expected
S2, S4, Sg 4: number expected
S3 5: number, <;> or <#> expected
Ss 6: number or <{> expected
S; 7:<;> or <}> expected
So 8: Zahl, <;> or <}> expected
9

: unexpected end of input

can even display the error.

parse program

script variables char i state result

set stato to
set rosuli to E]

seti to
repeat until i length of text program or

set char to letter i of program
(3
if char or ¢ char D

set state to

set stato to

if char =[§

set staie to
else

set result to

if state =

set state to

if char =

set stato to @

set result to

result

The translation of the parser consists
only of a very long copy of the state
graph - of nested alternatives. We
only show the first part.

The parser parse <program> is
guided through the state diagram by

the character string of the program. If
there is no permissible transition in a
state, it reports the corresponding er-
ror by the value of the "result" varia-
ble. Correct programs have the value
0 as a result.

17 Projects

205

The interpreter run <program> can assume that the entered program is error-free - after all it was parsed.
Therefore, it can take the first character of the program one after the other - this is the next command -
and delete this character. Depending on the command, it executes this and searches for the required pa-

rameters, e.g. the angle of rotation. All processed characters are deleted. This ends when the program

consists only of the last character — the "#".

run program

script variables command number loop content

warp
repeat until program | <
set number to m
»

set command to letter of program

(2

set program to rest of program from

program

s

if

command =

if command =[§

pen down
else

repeat until
letter of program] » or ¢ letter of program 9

set number to
number +

unicode of program unicode of [i]
4

set program to rest of program from program

-

i® command =

turn(j number degrees

else
if command =[]

move ‘number steps

set program to rest of program from program
g
set loopcontent to .

|

set loopcontent to join loop content program

r

set program to rest of program from program

W

set program to rest of program from program

set program to rest of program from program
>

The program is processed char-
acter by character, the pro-
cessed characters are deleted.
We use the function rest of
from out string library.

PenUp command (U)

PenDown command (D)

gather number

Turn command (T)

Move command (M)

run the loop (R)

search for loop contents until
the next "}"...

... and execute as often as the

number indicates. Append a ";
to the loop contents.

17 Projects 206

If we output the error messages in

‘ show error ! result :

plain text, then our programming lan-
guage will sIowa become usable. script variables (error text nr

set nr | to item of (result

We can evaluate programs with a
short script. if ‘nr =4

set erortext | to
go to x: @D y: @ —

point in direction @B

=< expecied

set theProgram to get command

set theResult to parse theProgram

if item @B of theResult =[]

CEUNGEIGIRCr g C number-expected

run theProgram o
a if ‘nr =

show error | theResult set errortext number,<;>-0or<#>-expected

-
set errortext number-or-<{>-expected

| < >or<}>expected

set errortext number,-<;>*0r-<}>-expected

if (nr =f
CELE IR o Tl unexpected-end-ofsinput

set error | to

theprogram M100T90# | join LR nr item @8RS of result

Ji¢o] 8l ERROR: 5 at position 5: number, <;> or <i#> expected

n error text

We should realize that the definition of this language is purely arbitrary. The body of the loop could also be
enclosed with square brackets, with percent signs or smileys instead of curly brackets, and the fact that
statements are separated by semicolons, but not terminated, also arises only from the current whim. A
program is syntactically "correct", if it corresponds to the language definition, and this again corresponds
to the conceptions of the language developers. It does not follow from generally valid rules.

It is also possible to learn from the error messages. They indicate where an error is noticed, not where it
was made. The indicated error position can therefore lie far behind the actual location of the error.

17 Projects 207

GG GeTe 211l D;R60{M200;T183};U;M300;D;R360{M1;T1}#

-]l ERROR: 5 at position5: number, <;> or <i> expected

Actually, it is a bit strange to develop a very primitive text-based language in a graphical programming lan-
guage. However, experience shows that learners usually combine the work of computer scientists with the
development of cryptic texts - i.e. they sometimes want to program "really". We can accommodate this
wish if we use such a mini-language in a standard field of computer science, in this case automata theory.
Since we develop it ourselves, we promote understanding for the processing of texts, which takes place on
many levels in IT systems. In addition, we have found a highly differentiating topic suitable for division of
work and challenging activities, which quickly leads to presentable results.

Tasks

1. Expand the language LOGO by

a Home (H) command that sends the turtle to the center of the screen.

a Clear command (C) that clears the screen.

a Color<n> (Fn) command that allows you to select a pen color.

a command TurnTo<angle> (Nn), which rotates the Turtle to a certain angle.

T e g

a command MoveTo<x><Y> (Vx,y), which sends the turtle to a certain point.

2. Develop a scanner that allows you to enter the turtle commands in long form, for example, to write
Turn 90 instead of T90. The scanner should recognize these commands and output them again in
short form.

3. Introduce an alternative: Depending on the color of the pixel at the location of the turtle, it should
be possible to execute different command sequences. Reduce the syntax appropriately and imple-
ment the command.

4, Two types of loops are to be introduced in this way: The turtle should execute drawing commands
as long as (WHILE) or until (DO) the turtle is above pixels of a specified color. Allow position-de-
pendent predicates as well.

17 Projects

208

17.2 SnapMinder by Jens Ménig’®

Level: high school Materials: SnapMinder

The program is based on data from the Gapminder
Foundation”, which provides tools for visualizing
statistical data on the Internet. One of these shows
the development of the countries in the recent
past, whereby life expectancy is represented above
income and the size of the "bubbles" corresponds
to the total population of the country in one year.
If you move the slider, you can impressively follow
the temporal development of the countries in this
coordinate system. For me, the program is a won-
derful example of how visualization can be used to
identify anomalies in data ("Why does a country
suddenly drop down?" "Why does a country move
in circles?", ...), the causes of which can then be ex-
plored.

The data used - and many others - can be found in
tabular form at https://www.gapminder.org/data/.

Importing Table Data

Life expectancy, years

Income per person, $/year (GDP/capita)

To import the required data, we load the file into a spreadsheet program and immediately save it again as
a tab-delimited text file. Let us take CO2 emissions per person from 1751 to 201278 as an example. For the

first years we find only a few values, but then it gets dense.

We read the generated text file into a variable via its context menu (import...). To do this, it must be dis-

played in the work area. We get a very long string of characters.

imported data [

76 With permission of the author, available at snap.berkeley.edu/run#tpresent:Username=jens&Project-

Name=SnapMinder
7 https://www.gapminder.org/
78 CDIAC: Carbon Dioxide Information Analysis Center

https://www.gapminder.org/data/
http://snap.berkeley.edu/run#present:Username=jens&ProjectName=SnapMinder
http://snap.berkeley.edu/run#present:Username=jens&ProjectName=SnapMinder

17 Projects 209

We turn them into a list:

Each line again contains a character string with the

data for each country, whereby the data are sepa- Aok
rated by tabs. Therefore, we "hack" the list line by *:’:::z'm“
line in the same way, but with a different separator, ce—
and add the sublists to a new list variable called —

script variables

Anguilla

data. | A = B

set data to list
L

[-

seti tofl

repeatuntil. i > length of imported data

add split item (i @ of (imported data by [ZiRd4 to ‘data

This provides the necessary data for editing in
Snap!.

Table view

239 UUUUUUUL VVVWWVVV WWWWWW XXXXXXXX YYYYYYYY ZZZ77777 AAAAAAAA/BBBBBBBBICCCCCCCCDDDDDDDCEEEEEEEEIFFFFFFFFF GGGGGGGHHHHHHHE 1l

1

O 00N ;AW N

1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 197

0,0498313310,06854618< 0,06896493 0,0801598510,09425452¢0,0999903240,11495636170,10732313€0,0807000210,13974200¢0,15445702£0,12170117€0,12690179£0,14501490£0,1574¢

1,3720378341,4387791831,1802632761,1008282361,1627811651,32709791£1,3663478971,51414067E1,6682427441,75208202¢1,9885026642,6173724532,3068706221,8508208511,9136¢
0,55100057¢0,60568644£0,4751545660,48480303€0,65324433170,68026966< 067135256 0,6998848970,8452709581,09657091£1,31774202¢F 1,94148771 2,564506969¢2,05510081¢ 1,9994!

0,0899672110,22938558¢0,2196327520,2294645370,21873880¢£0,28143398€0,1768958270,29265785£0,4791971660,60447722(0,56384736< 0,72921732 0,7719366620,7526105840,6651°

0,8602849171,82155826 1,4673812161,56286407¢2,5120869825,7073884729,07444905115,6148956€19,490247157,0440788576,39080045:5,54739761£4,83998709:6,23111782£10,193¢
2,44147066€2,52102177¢2,3149374412,53669857 2,63090590€2,79076267:2,8563159062,9680700413,27402979:3,44936406¢3,64820806¢3,6362023453,72914525¢3,72495879¢3,6398¢

8,632111858,8710584659,26477641£9,79716882E10,6477573E10,3568614710,8688105511,0556401811,41858012 11,5065694 11,761816 11,8964706¢12,6910960512,58853754 12,661
4,49961735¢4,7585547815,1573354965,3927453055,25379579E5,3680488315,4334178245,7266556126,01344120£6,78926126€6,9555709557,4653864917,96 740619E7,69267512:7,1765]

4,7461023475,9955405076,55730066£8,11712998€9,3981617847,46464087611,1713175€10,2850827410,62623717 15,1977658 38,7174694£36,4916305443,3761272439,9173019443,700z
10,5934357€9,2361506116,74681567¢8,7919501276,5915038473,4026445215,14920566€5,6233505916, 19770634 12,2350283:13,8461211416,1281607€23,1561467:21,566976563621,696¢

A NAAADNNAT N NATEA40N N NEN4E4RATN ATHNNNNDAN NEANANDACA NEANS4 4NN NEARTEANCA NBATATTATN NETNNTALCA AESANTEDCN NENA DOA GEA AEGE NS/ AERNAAN0N"A AEANANNNN N NEONT

oK
&4

17 Projects

N
=
o

The SnapMinder Data

The program contains the required data as described above in the variables
income data, life data und population data. It prepares them for further use
with the help of higher order list operations’. As an example, we show the
population:

set population to
keep items such that

length of text (11 e A RN i el 1=

split [] by split population data - clean by

Convert the population data into a list (here in "one step") and throw out
those "without interesting content".

income data

[
(1]

“
—
=
-"@
o
=
)]

max income

max population

min population
population
il population data
population data - clean

population year index

The operations are very compact due to their nesting. If you take them apart, however, they are easy to

understand. As an example, we take the first nested block. It can be read "from behind" as ...

map | split] by over split population data - clean by transform data of the existing coun-
tries into a table as discussed above,

keep items such that discard unusable data ("... no num-

assign the result to the population variable.

population
194 A B C D E F
1 Total population 1800 1810 1820 1830 1840
2 Afghanistan 3280000 3280000 3323519 3448982 3625022
3 Albania 410445 423591 438671 457234 478227
4 Algeria 2503218 2595056 2713079 2880355 3082721
5 Andorra 2654 2654 2700 2835 3026
6 Angola 1667028 1567028 1597530 1686390 1813100
7 Antigua and Barbuda 37000 37000 37000 37000 37000
8 Argentina 534000 534000 570719 686703 873747
9 Armenia 413326 413326 423527 453507 496835
10 Aruba 19286 19286 19555 20332 21423
1l Australia 351014 342440 334002 348143 434095
12 Austria 3205587 3286650 3391206 3538286 3728381

72 Jens Ménig uses a little trick: If you move the block of a list operation over the join block from the string
operations, which is displayed "empty" € | i.e. without input parameters, then it turns into the join input
list-Block , which converts the list into a simple string. The function can also be eas-

ily written by the user.

17 Projects 211

The program starts with three messages that cause old country sprites to
h licked
delete themselves and initialize the other objects, especially the data lists. S

For the data this causes:

broadcast remove all and wait
broadcast initialize and wait

broadcast show all

set turboomode to -I.

when I receive initialize

set income to

keep items such that Process the data as described above.
join input list: all but first of B > [First the income,

split [l by split income data by

set life to
keep items such that

... then life expectancy, ...

join input list: all but first of B >0
split [l by split life data by

... and extract the countries from it.

set couniries to map | item of B over

set income to

o) in front of Assign the income to the countries.

countries contains B

all but first of (income

set counties to map | item @B of B over income

set lfe | to Same for life expectancy.
1) life | in front of
countries contains B
all but first of (life
set population to Write back the population data from the

feecplitem sisuchlthat auxiliary variable.
join input list: all but first of B =0 from

split [l by split population data - clean by

minlife to .
maxifo to @Y Set some variable values.

maxincome to EQ]
minpopulation to m
maxcol to
script variables years i idx last found idx

set ycars to all but first of population EXtraCt the yearS.

set population'yearindex to list

repeat max col Create a list of years as an index.

set idx to firstindex of (i + @EL in (years

set lastfoundidx to
S

add idx to population year index

change i by @D

set max population to RV

17 Projects 212

The SnapMinder Countries

At the start of the program as many country clones, repre-

sented by a semitransparent rectangle, are created as countries Lo LRl

. t ghost ffect t ‘I’

are included in the country list. Each clone has its own index idX. == gies S SHEE RS
set size to %

set idx to

The main function of the countries is to position themselves in

repeat longth of (countries - &P

the coordinate system of average income and life expectancy in

relation to the year under consideration. For this ...

change idx by

go to data slot 'slot # scaling ' scaling ?

broadcast slider changed

script variables dollars years new size
set dollars o item (slot of idx + €D income ... they determine these data for their country, ...

set yoars to item (slot of ide + @D

if length of text dollars n and ¢ length of text years determine the position

go to x:
log of { dollars . 0.003 | og of @& |/
left + log of { max income | 0.008 | log of
right - left
bottom +

years min life) / { max life min life top = bottom

Bl vowroize ... and their size, which is given by the pop-
) ulation of the country in the year under

consideration.
item item value of Sider |+ @B = of (population year index + &P

of id« + &P population

/ max population

max size — min size

if not ¢ new size size

set size to new size %

This block is called, among other things, when a plot e

of the country, i.e. the movement in the coordinate [l et il AL

system with the year as parameter, is generated. L
go to data slot (slot scaling @x

set pen size to @&

pen down

repeat
change siot by
k

go to data slot (slot scaling @x
_*

scaling @x

go to data slot | value of Slider +

17 Projects 213

Use SnapMinder

The presentation is impressive because, on the one hand, the countries move from bottom left to top right
in the course of time, i.e. they develop positively. But if you take a closer look at some countries, this de-
velopment is by no means continuous: there are abrupt downward swings, backward movements, circles,
periodic movements, ... The program gives rise to research into the causes of these developments, and

there are a few surprises! We show plots of some countries, then you should do research! @

USA Germany

China India

Norway Somalia

17 Projects 214

17.3 Connectivity: The World is Small®®

Level: high school Materials: Connectivity

[scalefree | | 10nodes || 10links | | new | nodes [711
| as a node E] | one node I I one link l l diagram] links m

The handling of networks is often reduced to protocols and other technical details. But you can also ask
other questions, e.g. about the connection of networks.

o If we have n nodes, how many links do we need for the network to be largely connected?

e Orvice versa: How many and which nodes must be destroyed for a network to break up into its subnets?
e Or: What is the mean distance, counted in links, between the nodes of a network?

Nodes and links can be very different in nature. It can be e.g.
e technical links between computer systems,

e customer/supplier relations in the economy,

o the logical connections via linked websites,

e social relations between persons or groups of persons

e hydrogen bonds in organic compounds,

e neuronal networks

e or infection chains.

80 based on E. Modrow: Informatik mit Delphi — Band 2, emu-online, 2003

17 Projects 215

Random Networks

The starting point for such questions were Random Networks. They are created when we build N network
nodes (or pages, ...) that we subsequently link to each other. Let us take the Internet as an example. If there
are N pages with on average Kk links per page, then with n mouse-clicks k" pages are accessible. We can
reach virtually any page ifitis: K" = N =2 n =log N / log k. With 5 billion pagesandk =7, n =11.5, i.e.:
with about 12 mouse clicks on average, you can visit any page of this network. Similar considerations and
practical studies have been carried out on social relations, etc. They can be found under the name Small
World Phenomenong?,

If you display the distribution of links per [Crandom] [0nodes | [10tinks] [rew] nodes [EI0)
. . . . | |_onen | | _onelink | [diagram |
page, you get a Poisson distribution for |~ DoesBlemedlem e
: links E:’
Random Networks. i

It is somewhat more difficult to decide

whether a network is (largely) coherent, i.e.
whether all nodes are connected to each

other. We can answer this question by col-

oring: start with one node and color all the
nodes that can be reached by it in the same

color, then a coherent network shows a kind

of phase transition: almost suddenly all () —
nodes take on the same color. e e

v

You can see that the network - except for a few slips - is coherent if the number of links roughly corresponds
to the number of nodes. Further links do little to change.

P R o] g] [a0umis] (o] T L] L] oo] |[== i
e) [[orme | [] (o] (o) [FoerD) [[(o] T] =]

om——

81 https://de.wikipedia.org/wiki/Kleine-Welt-Ph%C3%A4nomen

17 Projects 216

Scalefree NetWOrks [Cscalefree | [10nodes | [10links | [new] nodes [EX23)
as a node E one node one link | diagram p— m

number of nodes

Albert-LaszI6 Barabasi®? showed in 2002 that
growing networks like the Internet have a
different distribution of links per node than
Random Networks. It can be described by a
Pareto distribution. Brief descriptions can
be found in

http://barabasi.com/f/623.pdf bzw.
http://barabasi.com/f/624.pdf.

links per node

A Scalefree network can be created by alternately adding nodes and links where the new nodes have two
links to existing nodes. The older nodes are more likely to be linked than the younger nodes. Because the
network is always coherent, there is no need to color contiguous nodes. But we want to make the size of
the nodes dependent on the number of their links.

e B D] [(o] =] o
s N) (] ([e | [U] [Biagrame N N e | e | e | e i e B
e
[o]
| .
.
/|0
A7
s ly
/
& A
&

e N e e e o & Lo Coem) Lo T =]

Scalefree networks are the same on all scales, i.e. numerous nodes with few connections are connected to
a few nodes with many connections, so-called hubs. The connections between nodes normally run from
the start node to the next hub, then via a few more hubs to the target node. Hubs can be, for example,
people with many contacts (teachers, representatives, ...), central computers or distribution centers in mer-
chandise management.

Scalefree Networks are extremely robust against technical faults. For example, if a network connection
happens to fail, it probably does not affect a hub, and if it does, other hubs will compensate this. However,
they are also extremely susceptible to targeted interference. If only a few hubs in this network type are
destroyed, the network disintegrates into its individual parts.

The topic is suitable as an introduction to discussions about vaccination protection, preventing the spread
of diseases, influencing political opinion-forming, optimizing the flow of goods, ...

82 A.Barabasi: Linked: the new science of networks, Perseus Publishing 2002

17 Projects 217

The Implementation

We want to create a fairly simple model as a tool for research- 712 items

13 A B
ing network properties. It is essentially based on a node from 1 _ 1 9 7
which clones are generated and two lists, of which the node 2 — 2 4 6
list contains the nodes already generated and the link list con- 8 — i 2 131
sists of sub-lists with the numbers of the two end nodes of the : = 5 1 3
links. With their help, methods can be implemented largely in- — 6 3 9
dependently of each other. They are used by the operatingel- 7 _ ; 160 j
ements shown. The controls depend on the selected net type & [N 9 6 2
(random/scalefree) and the display of the nodes (rectangu- 9 — 10 8 2
lar/round with different sizes). 1? = 1; 110 z
when I am clicked 12 -4 JUE ° >
[N costumoramo) JERRbTypa(iNatwork:) Buttons for switching between net types or for creating 10
el) hocalofrco nodes react to mouse clicks:

set typeofnetwork to
broadcast deleteall v »
broadcast new v » ‘

secs

when I am clicked

wait 0.1

if type of network =

create two linked nodes

repeat 10

switch to costume bRandom
set typoofnotwork to add |ask Node for to nodelist

broadcast delsts allv »
broadcast new~y »

change nodes by &P

repeat 10
Since we often have to iterate over such create a new scalefree node
node lists, we introduce a new control show all nodes

structure that executes an instruction for

all objects in a list:

tell all objects of (list : to (do this A

This makes it very easy, for example, to display all nodes:

for each ‘item in (list

tell item to do this show all nodes

_

script variables o »

create links per node Links pro Knoten

tell all objects of nodelist to show of Node

17 Projects 218

New nodes are created by cloning the
new node

prototype. The prototype can be asked

script variables new

to perform this action.
change index by

go to x: | pick random to y: pick random to

if costume round

ask Node for new node of Node

switch to costume circle'gray
.

set size to %
else

switch to costume square-gray

b

set size to %

set now to (a new clone of myself

run set index to i of new | withinputs index

report new

A new link is inserted into the network by trying to find two nodes that are not yet connected. The link list
must then be searched to see if the link already exists. If not, the search returns O. This allows the ends of
the link to be determined. Since the resulting nets are quickly becoming large, the search for them does not
take too long.

insert a link

script variables nodel node2 costumeno nl1 n2 i

set found to (@ taise
,
if. length of (nodelist >

set n1 to pick random @ to length of ‘nodelist
K
set n2 to pick random @ to length of ‘nodelist

b

seti to
e

repeat until i or found

set n2 to pick random @P to longth of ‘nodelist

b

nl n2 and

set found to index of nl n2 in (linklist

index of n2 in (linklist

change i by @D

insert a link from n1 to n2

17 Projects

219

Once you know which nodes
are to be connected from a
link, ...

. the affected nodes are
searched for, ...

... the costume according to
the net type is selected, and
the nodes are asked to
change to it.

The pen is asked to draw a
line between the nodes.

Finally, the new link is en-
tered in the link list and the
related nodes are colored in
the same way.

With Scalefree Networks it
is a bit easier because the
costumes are chosen ran-
domly.

insert a link from n1# to n2#

nodel node2 | costume no
set nodel to item nl1 of nodelist

set node? to item n2 of nodelist

type of network =

costume# of (nodel > [costume# of (nodel | <

costume# of ‘nodel > Kl costume# of (nodel | <

set costumeno to costumo# of nodel
s

tell node2 'to switch to costume with inputs costume no

if costume round
set costumeno to pick random to
else

set costumeno to pick random @ to

5

tell nodel 'to switch to costume with inputs costume no

tell node2 'to switch to costume with inputs costume no

draw a line from > to > of Pen

with inputs ([[J:(5]

insert list n1 'n2 in linklist
.

color nodes connected to n1
else

1# costume round

tell nodel 'to switch to costume

with inputs pick random to

(5

tell node2 'to switch to costume

with inputs pick random to

tell nodel 'to switch to costume

with inputs pick random to
|

tell node2 'to switch to costume

with inputs pick random @& to [P

draw a line from > to > of Pon

with inputs ([[
F

insert list n1 'n2 in linklist

17 Projects 220

The most complex part is the coloring of the connected subnets. We work with two lists, from which the
connected nodes get all nodes that can be reached from the starting node. The nodes to be colored
contain the nodes that have to be colored — sic.

color nodes connected to node no #

script variables
connected nodes nodes to be colored costume no link i
We start with the given node set nodestobocolored to list
number as the bEginning and set connectednodes to list ‘node no

remember its costume. set costumeno to costume# of item node no of nodelist

As Iong as there are still nodes repeat until length of (connected nodes = [i]
in the list, we examine the link i
K

list to see if the first node num-

ber of the connected nodes = = —
set link to item (i of linklist

appears in the link either to the

item of (link item of connected nodes

left or right. If so, the other
node is also connected to the index of link | in nodes to be colored 0
source node and is added to link |) to connected nodes

the list if it is not already in the

list. _ item of (link item of connected nodes
index of link | in nodes to be colored 0
If the first node in the list is not link |) to connected nodes
yet contained in the list nodes
to be colored, it is entered change i by .
there and removed from the
list of connected nodes. connected nodes | in nodes to be colored = [}

. connected nodes = to nodes to be colored
Finally, the costumes of all

nodes to be colored are set to delete of connected nodes

¥

the same value as the costume for each item of nodes to be colored

number of the initial node.
tell item item of nodelist to| switch to costume

with inputs costume no

The controls, the two (and further) net types, the creation, joining and coloring of nodes as well as the
diagram creation are based on the sub-lists and can be developed largely independently of each other. The
topic is therefore well suited for teaching in different working groups.

17 Projects 221

17.4 EVOI ution new experiment I generation “

Level: high school
Materials: Evolution

The aim of this small project is to pro-
duce a presentable result with the
simplest possible methods, which
can be used in class if required. The

methods, e.g. for the representation father mother

of the animals, are partly found by
"trial and error", which of course
challenges improvements. That's the ‘

way it's supposed to be. The starting childl child2 childs childa

points of the parts are somewhat
highlighted in the pictures. | crossing child1 with child2 | | crossing child1 with childa | | crossing child2 with childa |

[crossing child 1 with child3 | [crossing child2 with child3 | [crossing child3 with childa |

In the project, "animals" are randomly created, each consisting of 9 rectangles of random size, which are
rotated to create a kind of horse. With a different composition, other "animals" can be quickly produced.
The partial rectangles are always drawn in the same order and orientation, so that you have to try out
where to start drawing. Of course, this problem can be solved more elegantly with some mathematics, and
if parameters can be used to influence how a rectangle is drawn, then it can be done more beautifully - in
a different way. But it can also be done quite simply.

After the production of two animals, four off-

spring are created and shown slightly smaller -

bEIOW. From these y0U can Choose two and ap_ I|-ead ear neclf body frontLegUp frontLegDown hindLegUp
hindLegDown tail

pick random to pick random to

set head to list

point them as new parents. If you repeat this,

you can "breed out" certain characteristics, pick random to
e.g. small heads or short legs. At each crossing, [Fi s B 0L to pick random @D to

pick random @ to

pick random @3 to @ pick random @D to €D
pick random @ED to

the characteristics are changed at random. If a
part becomes too small, it falls away. So, you | -GS RS
can breed something like seals or ostriches out

pick random @D to €P pick random &P to €D
pick random @D to €D

e ey set body to list
of the initial horses.

set frontLegUp to

It makes sense to create new parts by muta- jiog Pick random GID to €3 pick random € to €D
isi =
tions or to change the starting point of the pick random @ to €ZD
. | h T n T d h h set frontLlegDown to
parts, i.e. to let them "migrate". To do this, the - pick random €I to e
isi =
data structures must be changed, for example pick random D to
by recording the coordinates of the approach [k
o pick random @[to @3 pick random @& to &P
points and adjusting the methods accordingly. Bl 0 o)
. . set hindlegDown to
New animals can be created from the object ., pick random @[to @B pick random € to €D
. . . IS -
Animal, which has a local method for this. In pick random @L to
it, the parts of the animal are generated as lists | " g I E Ll 0 2 pick random @ to

" " pick random @) to @D
of "reasonably usable" random numbers. They .

are then combined to form the complete list. list €20 (icad) @=cd) (Bady) (Fontleglin) (ontlegDown) (indCegii
hindLegDown tail

17 Projects

222

The parts of the animals are always drawn with the same method show
part. The pen moves to the horizontal position and rotates to the angle
passed as the third element in the list, then draws a rectangle with the
lengths passed as the first and second element. In addition, the starting
point is emphasized somewhat.

The method

show animal
fl rst c ha nges t he script variables ear head neck body display

show animal animal : at x # y# size n#

set display to change size of animal to n

size of the animal
as indicated. b i GER L RURCD D)
Then the parts

are drawn at the

set hoad to item of 'display
set neck to item of 'display

" set body to item of display

"tried out
. gotox: 'x y:'y
points. Only the show part body

first part of it is
shown. point in direction €
turn b item of ‘neck degrees
turn 6 @D degrees
move item of ‘neck

turn t) @D degrees

show part neck

turn d @D degrees

move item of ‘'neck steps

point in direction

turn t) item of (head degrees

turn ¢, @ degrees

move item of (head steps
show part head

turn t) degrees

move item of '"head steps

point in direction &

turn b item of ‘lear degrees

turn d €@ degrees

move item of (ear steps

show part ear
show animal display (2)at x vy

show animal display (3)at x vy

show part part :

set pen size to

set pen color to

point in direction €
turn t) item of part
pen down

move item of (part
turn § @D degrees

move item of (part

turn & @D degrees

move item of (part

turn t) @D degrees

move item of (part

turn § degrees

move item of (part

move &P steps
set pen size to
set pen color to

move @P steps

degrees

17 Projects 223

Two animals are "crossed" by randomly assembling the parts of one or the other animal into a new one.

During each of these processes the dimensions are changed randomly - depending on the mutation rate
mr.

crossing of animall : with animal2 : mutation rate mr #
script variables part i result

set rosult to list

seti to

repeat @

Select from which animal a part will
be taken.

set part to item (i of ‘animall

set part to item i of ‘animal2

item of (part Change the width of the part ran-

replace item of (part ' with domly.
item of (part |+

s

if item of (part | <

GUSSERIE of Gl with Too small parts are removed
replace item of (part with [{] ’

pick random @ to and ¢ item of (part

replace item of (part with The same, for the hEIght
item of (part |+ 2 to 2

if item of (part | <

replace item of (part with [

replace item of (part with [{]

replace item of (part ' with
item of (part |+

add (part’ to (result Add part to new animal.

change i by
=
report result Return result.

A new experiment is started by asking the An-

new experiment imal object to create two new animals as father
and mother. They'll be crossed.

set father to ask Animal for new animal of Animal

set mother to ask Animal for new animal of Animal

crossing of father with mother

set goneration to m

This is done accordingly with the children.

when I am clicked
crossing of childi with child2

go to x: €D v: €D

change generation by @B

17 Projects 224

Let us try to breed "jumping ponies" with short tails. First, we create the parents and select candidates for
ponies from the offspring.

[new experiment | [Cnew experiment | (_generation (EI_
father mother father mother
childl child2 child3 child4 childl child2 child3 child4
generation n new expenmen! generutlon
father mother father mother
childl child2 child3 child4 childl child2 child3 child4

Well - evolution is just unfathomable!

17 Projects 225

17.5 Rate Websites: PageRank®?

Level: high school [(setiinks | [(new page | [calculate page rank__|
Materials: Page rank (Uning ()) (pooore @) ((oalousicpr (TFP9))
If you know the addresses of websites, you
can reach them directly via the net. But paae: 1 ERslE B
what happens when we search for pages i e e
with specific content? For this purpose, of
course we use the search engines, which
propose us to certain keywords network ad- o
dresses from their tables of contents. These ::,,k ,,,“',,,..:,

015 015

directories can be created by web crawlers

automatically visiting as many accessible
websites as possible, jumping from link to link, and adding the keywords found there to the table of con-
tents of the search engine. This usually results in extremely extensive address collections for the same key-
word.

Since users of search engines cannot handle large unordered address collections, the pages found for a
keyword must be sorted according to their importance. Users then usually use relatively few addresses that
appear first. The links below are hardly noticed. So at least the commercially operating providers on the net
must be interested in appearing as high up as possible in the lists created by search engines in order to be
found by potential customers at all. They use all tricks to achieve this.

So far, nothing has been said about the meaning of a page's information for the keyword. Just showing up
doesn't mean much. For example, if a page contains the text "Nothing is written here about Goettingen", it
will still be included in the table of contents relating to the keyword "Goettingen". So, we need other eval-
uation criteria. In the simplest case, the authors of a web page enter keywords in the meta tags for the
content of the page: <meta name = "keywords" content =" Snap,School,Computer Science">

However, this possibility is often abused by using frequently used keywords - which do not affect the page
content at all - to direct potential "victims" to the site. Not very helpful is the idea to count how often the
keyword appears on the page. In this case, web pages sometimes contain certain keywords "invisible", e.g.
by writing the keyword very often in white on a white background. Of course, you can also have people rate
websites and enter them in the search directories. But this is a very expensive and relatively slow way to
create directories, and of course such an evaluation is subjective. It is also often difficult to evaluate pages
with special content - e.g. from archaeology. In the worst case, the "value" of a page does not result from
its content, but from the amount paid for the evaluation.

Another way to use the expertise of web authors for the evaluation of web pages on the one hand and to
automate the evaluation process on the other hand is realized in the so-called PageRank procedure. Un-
like the meta tags that evaluate your own website, links from one website to other websites are seen as a
knowledge-based vote by which authors indicate that other websites contain interesting content. If some-
one refers to a page with physical content, the author will most likely understand something about the
content. Moreover, since it is usually not known which other websites refer to their own, web authors can
only manipulate this procedure with difficulty.

83 based on E. Modrow: Technische Informatik mit Delphi, emu-online, 2004

17 Projects 226

The PageRank method does not evaluate all links equally. It determines a rank (the Page-Rank) for each
known website, which describes the "weight" of this page. This rank is divided during the "vote" by links to
all references leading away from the page. If a web page contains only one outbound link, then this receives
the entire weight of the page, if it contains two, the weight is halved, and so on. (If the page does not
contain an outgoing link, it will not take part in the vote. In the PageRank calculation, it returns the value
0.) The rank of a website increases if as many high ranked pages as possible refer to it and if these pages
contain as few links as possible.

As a first example, let's choose two pages that mutually refer to each other. page

A 4

page

To calculate the PageRank of page A - PR(A) - we need the PageRank

>
A
us]

PR(B) of page B, because a link from B leads to page A. The calculation of
PR(B), however, again includes PR(A). So, we need an old value of PR(A)
to determine the new one. Since this argumentation can be continued, a method must be developed to

reduce the influence of the old values on the calculation of the new rank, so that a stable result is obtained
in the course of the calculations. This is achieved by multiplying the contribution of the incoming links by a
factor d which is less than 1. Since this is included in every calculation, the "very old" PageRanks are multi-
plied by d", a number that is increasingly approaching zero. For example, you select the value 0.85 for d. If
we designate the times at which the PageRank was calculated in the past as 1, t2, t3, ..., whereby a larger
index should mean an earlier time, then for both our web pages we get:

PR,(A)=...+085-PR (B)=...+085(..+085 PR (A)=...+085-..+085 - PR (A)=...

If page B had more than one outbound link, we would have to divide its rank in the calculation by the
number of links - C(B). We must proceed accordingly with the other sites that have links to page A. If we
call these n web pages T1, Ty, ..., Th and replace the three dots in the above relationship with (1-d), then
we get the original formula that was initially given by Google for the page rank calculation:

PR(A) = (1—d) +d .(PCR(%) . F(’:R((TTZ)) ot PCR((rr“))), d=085

The rank of a website is at least 0.15. But what influence do the other terms have? We want to clarify the

guestion with a simulation program in which symbolic web pages can be created and linked. The PageRanks
can be calculated in a "website" created in this way.

In our program, in addition to the buttons shown, which serve to control the functionality, we need the
prototype of a "Page", which (here) should be a website, as well as a global list of all generated pages. Each
page contains a link list with the numbers of the linked pages, a number, a PageRank PR and a help variable
PRnew, in which the newly calculated PageRank is added up. Pages should be able to display themselves
on the screen. Since this changes the

costume, we better operate on a copy (costume >> I

of the current version. A correspond- ==

new costume f’map D over | pixels | of costume (costume width

ing block can be written quickly.

of costume height of costume

17 Projects

227

For the display of text and lines on the
sprite we again use the appropriate
graphics library.

The most important task of the proto-
type is to create clones of itself. We
save such a clone in a script variable
result and ask it to perform the oper-
ations that produce the desired result
through a sequence of commands.
The generated page is added to the
page list.

switch to costume Untitled

set costume | to ! copy of { my costume

.
fill rect between D &P and EP EP color &P on

costume

" S——
draw rect between §P &P and color P €@ & on (costume
width €

i

draw line from P €D to EP €D color P P P on (costume
width @

1

draw text {join [EFH (number on (costume at & &P hight EEB
color @ @ ©

1

draw text on (costume at @@ P hight B color & & ©
i

draw text ioin PR on (costume at & @GP hight B color &P P
(0)

-
switch to costume (costume

 — P
‘9 create a new page ‘nr #

script variables " result

rosult | to (@ new clone of mysolt
result ([= |to W with inputs "nr
result ® to | ' |with inputs 5]
result ([set to | ' |with inputs list
result \ 9 show of Page

‘result |tol gotox: @ v: @
with inputs ' pick random to pick random to

Ft;l‘ result | to || show

.

dd (result to'Bage st

17 Projects

228

In the corresponding mode, pages are
connected by clicking on two pages in
succession. The numbers of the af-
fected pages are stored in two global
variables. Then the first one can be
asked to "link" to the second one. The
Pen draws a line between the sides
that decreases in thickness, a kind of
arrow. (Mutually connected sides
thus maintain a connection almost
the same thickness.) The second page
is inserted into the link list of the first

page.

When recalculating the PageRanks, each page must
distribute its current value to all connected pages.
The page calculates this value and asks all pages of
the link list to increase their auxiliary value PRnew

accordingly.

=

‘ calculate all PRs

in (page list

to.

o~

for each bage

—

tell page |to | set

b

for each | 'i:)age

(t;l 'page | to

for each {page

o

in { bage list
Q distribute PRs
=

in{ 'page list

to i
=

in bage list

(s

tell page to| | set

L
for each (page

[-

tell page to |Q show of Page

with inputs

of Page

with inputs &1 PRnew | of

e

if < (first page

. number
. number

|9 draw a line from > to >

—~
‘ set first page
else

- —
‘ set second page

tell |Pen v to of Pen

with inputs S{ERTEn T TR R T

item | second page of (page list

item (first page of bage list
‘ Q@ add link @ to link list of { item (first page of (page list
with inputs (-CETTGERE) ()

to [i]

(s-et socond page ‘ to m

set first page

-~
| Q distribute PRs

ha -
script variables (value

for each (jtem of (Tink list

-

| by @

= = “
tell item (item of (page list |to \| change

A4

delete all PRs/

You can use these auxiliary meth-
ods to calculate the pageranks.
First of all, all auxiliary variables
of the involved pages are set to

hd

zero. Then all pages distribute

calculate

new PRs their values to the connected

other pages. When this is done,
the auxiliary variables are copied
into the PR variables and the

pages are redrawn with the new

v

v values.

show pages transfer

Y PRs 4

17 Projects

229

We now want to use our simulation pro-
gram. We create two websites, link them
and calculate the PageRanks. You can see
that the values converge towards 1 (inde-
pendent of the initial PageRank, by the
way). This is of course no surprise, because
this is exactly what we intended to achieve
with the introduction of the "damping fac-
tor" of 0.85.

As next example we choose the structure of
a typical homepage with a tree structure,
which starts from an index page and
branches to subdirectories.

We now assume that there are additional
external sites that link to our homepage.

The PageRank of the homepage increases
considerably, also the weight of the internal
pages increases.

| set links

new page i [calculate page rank]
|_\I|nk1r'|9 ’ g i n o/ I_\Gﬂlculale PR [T ’

page: 1 page: 2
. [
page rank: page rank:
0.99995999 0.39995955
[set links] l new page I [calculate page rank]
[\Iinking ’ J |_page no “ . [\c,aloulale PR . _/;
page: 2
page rank:
0.43944197
page: 3
page rank: pageE: 3
0.43944197 pags rank:
0.27450B5§
page: 4
= &
page rank: h—___ B
page: 1 0.43944197 page rank:
pags rank: 0.27450BE5§
1.02155992
I set links] [new page I calculate page rank
(tmkane @)) (pooero @MW) (onteutoterr [P)
page: 2
page rank:
0.83424223]
page: 3
page rank: page: S
0.83424223] page rank:
0.41470199
page: 4
page rank pag=: €
page: 1 0.93424223 page rank:
e o 0.41470134
2.76791374
page: 7 page: 12
page rank: page rank: page rank: page rank: page rank: page rank:
0.15 0.15 0.15 0.15 0.15 0.15

17 Projects

230

Finally, we want to assume that the external
pages are again referenced in a link list of
the homepage.

The rank of the homepage continues to rise.
One can see how the importance of the
pages is growing in a network of pages that
mutually refer to one another in order to ex-
press their "respect" for one another.

The PageRank procedure is a technical pro-
cess that can also be transferred to other,
e.g. social systems.8 However, it quickly
leads to socio-political questions, because
the focus is not on the content of the pages,
but on their structure and functionality.

[set links] [new page] calculate page rank
((inking [T) (_pagene D (catouate rr [P))
page: 2
page rank:
1.15761247
page: 3
page rank: page: 5
1.15761247 page rank:
0.47799020|
page: 4
page: &
page rank
page: 1 1.15761247 page rany:
page rank:| 0.4779%020|
3.55627933
page: 7 |~|page: & page: 9 page: 10 page: 11 page: 12
page rank:| page rank:| page rank: page rank:| page rank:| page rank:
0.21771527 0.21771527| 0.21771527, 0.21771527 0.21771527| 0.21771527|

1. If the result of the PageRank calculation is decisive for the "visibility" of the pages®>,

why are commercially oriented private companies allowed to decide on this visibility?

2. Theintelligence of the system results from the expertise of those who have consciously

set links in very different areas. Isn't the result actually a public good that should be

available to everyone without some profit (and power) from it?

3. If only the PageRank would be decisive, the search results would always have to be

arranged in the same order. Obviously, this is not the case: the results differ depending

on the person who is looking for. They are filtered according to their interests assumed

by the search engine. In extreme cases, you only get the results that you want to see -

or that someone thinks you want to see - or that someone thinks you should see. The

political consequences (keyword: "echo chambers") are currently under discussion

84 There it even comes from: https://de.wikipedia.org/wiki/PageRank
85 What only appears at the back is practically non-existent on the net.

17 Projects 231

17.6 The Smart Scale

Level: high school Materials: Smart scale

A sensation is looming in the supermarket: the fruit
department has ordered an "intelligent" scale with a
camera that is supposed to recognize and weigh fruit
at the same time. Unfortunately, only the camera is
included, the fruit recognition has to be imple-
mented by yourself. The fruit department gets help
from the scanner cashiers, because they have al-

ready done something similar earlier in this book.

First, we try to find some criteria to distinguish fruits. We draw

an apple, an orange, an apricot, and a banana. The differences

are obvious:

e apple and orange are round, the banana is long

e orange, apricot and banana are orange-yellow, the apple is
(in this case) green

o the apricot is small, the others are bigger

But what do "round", "long", "yellow" and "green", "big"

mean???

We know it, but the computer doesn't. We have to

when h clicked
switch to costume smart'scale

teach him.

We change the stage size to 800 x 600 pixels and
bring the object with the costumes of the self- S X:@":
drawn fruit (Drawn fruit) to the center of the stage.
There we ask it to assume the "drawn apple" cos- L drawn-applo (4
tume and stamp it on the stage. After that it should

hide.

We then instruct a Laser to determine the properties of the currently visible fruit. For this purpose, it is to
run across the image from left to right and from bottom to top, similar to the barcode scanner. In doing so,
it measures the size of the object on these routes and calculates the ratio of the results. "Round" objects
should have a ratio close to 1, "long" objects a small value. For "oval" objects, we should actually use mul-
tiple measurement directions. But for now, "oval" means for us "not round and not long".

So that the measurement does not take too long, the laser makes larger steps until it hits the fruit. It then
takes small steps back to the edge of the fruit and remembers its x-position. It does the same at the opposite
edge.

17 Projects 232

The determine horizontal dimensions - block of the La-
ser provides a list with two values: left and right border.
Correspondingly, the determine vertical dimensions - el Gt distance (result
block lower and upper limit of the object. With these re- ?ét distance | to
sults we can decide whether an object is round, long or i SRR

oval. And we know its size. go to x: v: @
point in direction ke

(9 determine the horizontal dimensions

The color of the object is still missing. We already know o - -

repeat until © not © color is touching [l ?
the limits within which the fruit is located on the stage. We
pass this to a block determine the average color of
In this block, the laser is sent to 5 points on the middle == (TS LTARMNER I

horizontal, determining the RGB values each time. The TN -1 ETTE

move | distance steps

same is done on the mean vertical. After that we deter- PiiiEEsErR e ==

mine the average values of the color channels. move @D steps

repeat until - color is touching i

(Q determine the average color of ! edges : move (distance steps

script variables (dx (dy (x (y (color (R
) repeat until © not - color is touching | 2

set dx | to

\. round | | item @) of (edges - item K of (edges /77

move &P steps

add ' x position to (result

éet dy | to
| round I/ item @EP of (edges |- item &Y of (edges /77

report ' result

N
set R toﬂ
N

set G |to [i

N
set B |to [i]

.

set x | tol item of (edges ' | + (dx

set y |to |l item of (edges Fa item @ of (edges / &

repeat £

go to x: x y: ;

set color | to' RGBA | at myself

hange R | by ' item @) of (color

change B | by item @K of (color

=

change x | by (I
=

set x |to [l item @B of (edges [EX item @ES of (edges /

set y |tol item of (edges ' | + (dy

repeat &£

gutox:‘; y:‘;

|

.

[change G | by item @R of (color
|

|

set color | to' RGBA | at myself
hange R | by item @K of (color

by ' item @B of (color

hange B | by item @EE® of (color

hange y | by (1)}
o
report_

list (round (R VAGED ‘;ound\a /10 :;ound\‘E /(10 |

17 Projects 233

With these methods, the Laser can determine
the characteristic properties of a fruit.

measure the fruit

script variables dx dy result left right top bottom]

go to front layer

set h to determine the horizontal dimensions
3 A B C
4 m set loft to item of (h
2 m set right to item of (h
& 3 200 186 1 set h to © determine the vertical dimensions
measure the fruit set bottom to item @K of ‘h

set top to item of (h
set dx to right - left

Normal fruits have different colors. But our RGB
set dy to top - bottom

values can display 256 * 256 * 256 colors, so

set result to list

16,777,218. That's a little too many. Weneeda | && /0 -
method to reduce the number of colors. add [to (result

We try this: for each RGB channel we decide
whether the color value is "high or "low". If it is add ¥ to (result
high, we set it to 255, otherwise to 0, so we only e Jgp—

get two possible values for each channel, so 2 *

2 * 2 = 8 possible colors. With this procedure | = D=

) add to (result
we try out whether we can see anything useful

at all - or not.
add to (result

1 . . [P
It's looking good, isn't it? o 7] to e

determine the color code of list [fB [with limit

add determine the average color of list left right bottom top

*

determine the color code of color : with limit limit #

script variables result

set rosult to .

for each (item in (color

So, we can equip the smart Fruit scale with a [} LSt

method that asks the Laser to determine the set rosull_to join result [
||

fruit data. re

set result to join result

report result

detect the fruit

script variables result

= Ieng‘[h: 3 vA set result to |call measure the fruit of Laser

detect the fruit ' replace item of (result ' with

determine the color code of item of result with limit

report result

fruits
16 A B G D E
1 100 applered round big 100 And we can use this result to compare the data with those
2 101 applogreen| round big 010 of the stored fruits. These are to be present in a variable
& 102 tomato round middle 100 .
4 103 . omange round hig 110 fruits, in which the article number, the designation, and
5 apricot oval middie o the typical fruit data are stored.
6 106 banana long big 110
77 106 cherry round small 100

17 Projects

234

determine the name of the fruit

script variables result data

L0 N Messung-lauft!

detect the fruit

set rosult

set data to

set result to

find first item
item of fruit item EB of data

item @F of fruit item L2 of data

item @R of fruit item of data

input names: fruit

if is result alist ?
report {1501 of result

report Sorry, not-found! |

and

in fruits

It's working!

apricot

.
determine the name of the fruit

fruit name

After these successes the crew of the fruit scale becomes courageous and tries to analyze

real fruit pictures.

A Snap! CSwS2 Smart scale x 4+
&« > C a berkel p.htm!
=
ASnap! R & % scsws2 Y | "I
Wwotion W control (3]
Brooe Bsnsing . Real fruit
Bsound Boperators = J [cenogzie
Bpen = Scripts Costumss Sounda
Meke e verieble p

Turve

import & picturs from anofer web pags o from
a4 on your computar by Groppng It here

to [

by

set

change

(e

bansna

show variable

hide variable

@

script variables

@
Y

epplet

8
3
R
L]

fruit name -

apricott

(

banana

Orange1

Orange2

apple1

apple2

{ 2

17 Projects 235

Their color spaces should also be reduced, similar to
the drawn fruits. Then we get again a color reduced paiucEythe, eolo Srere

image on the stage. script variables result

switch to costume

set result to list

We reduce the number of colors as described ...
if item @B of pixel

add to result
else
add [j] to ‘result

if item of pixel

add to result

else input names: pixel
add [J to result

if item of pixel

add to result
else
add [i] to result

add € . pixel) to result
report result

over pixels of costume current

and stam

X P fruit name
the image on
the stage. After

that we call the

previously de-

veloped fruit
, determination

again.

Okay, we should work on the entries of the fruit table as well.

Now you have the full toolbox together for optical fruit determination:

1. Take a picture of a fruit and choose it as the costume of a sprite. You can take pictures with your
smartphone or laptop camera. The background should be white.

Reduce the color space of the image.

Measure size and shape of the fruit.

Measure the mean color of the fruit and reduce it as well.

Calculate the color code of the fruit.

vk wnN

The obtained data shape, size and color code can be used as columns of a database table. We will have
three different values each for size and shape as well as 8 possible color codes. This allows us to distinguish

3 * 3 * 8 =72 fruits. Try a "real" intelligent fruit scale in a department store - we're not that bad.

17 Projects

236

Tasks
1. Create a database table for fruits of the following type:
pnr fruit shape | size color code
123 red apple round | big 100
223 cherry round small 100
456 banana long big 110

2. Add the table to your database.

3. Write an evaluation method so that it provides the name and price of the fruit. To do this, use database

commands.

The color reduction process is very coarse. Come up with a better way.

5. Our fruit recognition process only works well if the fruit is placed in the center of the stage and aligned
horizontally. If we fit a sprite with a fruit picture as a costume, we can center and align the Sprite in the

middle before we print the costume. Implement the procedure.

situation?

It could be that the background of the fruit is not white. Can you help?

If we use a more detailed color code, we can distinguish more fruits. Would that be progress in any

17 Projects 237

17.7 License Plate Recognition

Level: high school Materials: License plate recognition

The success with the smart scale goes through the e e
supermarket like a wildfire. It also reaches the se- G 0 — E M I Z 3
curity department. Among other things, it is re-

sponsible for the parking garage. To simplify the

payment of parking fees, the department installs automatic license plate recognition. Registered customers
with a customer card and automatic billing no longer have to stop in front of the parking garage barrier - at
least that's the hope.

Car license plates contain special character sets that facilitate character recognition by computers. In Eu-
rope they have a black border - and that is good for us. So, let's try to determine the numbers on the plate.

(We leave the other characters to you.) Fortu-

nately, we have already realized almost all tools for 3 5 6
our project. All you must do is ask the people at the

smart fruit scale!

We are trying to develop an extremely simple method of license plate recognition. The result is very sensi-
tive to changes in position and size of the license plates. But these disadvantages can be easily corrected by
using a detailed measurement method. Take a look at the exercises!

OCR (Optical Character Recognition) uses complex methods, often with neural networks, to recognize char-
acters. Here we are inventing a simpler procedure that is similar to that of the smart scale. Because all our
marks on the license plate are the same width, we can easily identify them once we have found the bound-
aries of the license plate. With the intelligent scale you can see how this happens. We continue to use their
laser.

We can quickly generate license plates using various generators on the Internet. We save them as costumes
of a sprite License plate. After clicking on the green flag, we stamp the costume onto the stage - as with
the intelligent scale. The relevant area with the digits is then located between -240<x<240 and -40<y<40.

We start by searching the top and bottom of the license plate for lines that do not contain black pixels.
Their positions indicate the upper and lower edge of the relevant characters. Then we search from left to
right for vertical lines with black pixels. When we find the first one, we also have the beginning of the first
character. Then we search for the first vertical line without black pixels. Their x-position is the end of the
first character. We have a "window" with the first sign in it. The next line with black pixels gives the width
of the gap between the characters.

17 Projects

238

determine the upper edge of chars

script variables x \' blackPixelFound

show

set blackPixelFound to (@ false

(3

sety to

*

repeat until blackPixelFound
set x to
e

repeat until €& A ST

gotox: x y:y
.

set blackPixelFound to touching

>

change x by

change y by

I hide

report v + @

next vertical line from x0# with black pixels nl between
bottom # and top #

script variables x Y blackPixelFound

set blackPixelFound to () raise

repeat until blackPixelFound

blackPixelFound or

gotox: X y: ¥y
set blackPixelFound te touching ?

change y by €D

;
change x by €D

determine the lower edge of chars

script variables x V' blackPixelFound

show
.

set blackPixelFound to () false

(s

sety to
»

repeat until blackPixelFound

set x to
.

repeat until €1 O EH GO G TS]]

gotox: x y:y
.

set blackPixelFound to touching

>

change x by

change y by
hide

report v - @D

next vertical line from x0 # without black pixels nl between
bottom # and top #

script variables x Yy blackPixelFound

set blackPixelFound to true .
repeat until not blackPixelFound

set blackPixelFound to ({taise

LIRS blackPixelFound or
gotox: x y:'y
set blackPixelFound to touching

change y by €D

change x by &P

I hide
report x

set upperEdge to determine the upper edge of chars

With the help of these blocks, we determine the

. set lowerEdge to determine the lower edge of chars
boundaries of the first digit and the distance to the sec-
next vertical line from with black pixels

it lofiEd t
set leflEdge - between lowerEdge and upperEdge

ond. Then we draw the circumscribing rectangle in red.

set righttdge to

) set gap to
next vertical line from leftEdge + @ without black pixels
between lowerEdge and upperEdge

We can now mentally move this window over all characters of the license plate and try to recognize the
characters within the field.

1234567890

17 Projects 239

The number recognition itself is still
missing. As a starting point we take

the characters with the rectangle
around. We imagine a "sensor field" consisting of three crossing lines. We measure the

P1
colors at the round points. We number the points as shown and look at the results in tab-
ular form. (gray fields: result difficult to predict). P> P3 b4
PS5 P7
P6
char code
0 00100100 P8
1 01111110
2 01101010
3 01011100
01111100
4 11010001
5 00001100
6 0100100
7 01111010
8 00010100
01010100
9 00101100
00101110

Errors may occur with characters 3, 8 and 9 if the points are not very well adjusted. But that doesn't matter,
because if we move the sensors P2, P3 and P7 a little bit so that they provide clear values, we can even do
without the sensors P1, P2 and P8 (e.g.) and still have a usable code.

char P1 P2 P3 P4 P5 P6 P7 P8 code value
0 10010 18
1 11111 31
2 10101 21
3 11110 30
4 01000 8
5 10110 22
6 00010 2
7 11101 29
8 01010 10
9 10111 23

A possible layout
for the remaining
sensors would be:

We choose a license plate with all ten characters. The sensors are placed in suitable places (here: (14|24),
...)and stored in a list to read the colors in the character window at the positions and to form a code number
from the colors interpreted as a dual code. When we're done, we transform the code into the right charac-
ter.

17 Projects 240

recognize the digit at x0 # code code # --> digit

script variables code points i dualcode

if code =
if code =
if code =

Y

l show

set points fto
list

L

set code to m
L

set dualcodo to
L

for each 'point in ' points

gotox: x0 + item of (point

upperEdge - item of (point

»

it item @B of RGBA at myself

if code =0

change code by

b

set dualcode to dualcode [/ if code =

if code =
if code =
Y
T

(=3 ERROR

report code code --> digit

Now the security department can ask the laser from their
read license plate of Laser

office in the car park which car has just arrived:

license plate || < iy)

:

The result is particularly impressive for the advertising department, which immediately sees completely
new applications for the process. Everyone's very proud of the security!

17 Projects 241

Tasks

10.

Character recognition in the examples is very simple, but very sensitive to changes in the size and
position of the license plate. Use more sensors to detect the characters more reliably.

Extend character recognition to the entire character set for vehicle license plates.

Character recognition programs can learn. If the script does not find any recognizable patterns, it
should display its result and ask for the correct character. Save the patterns and the corresponding
characters in a database table. Use queries to identify unknown patterns.

If you want to read dirty license plates, you won't find any sharp character boundaries. As a result,
some sensors will produce errors. Improve the results in such cases by determining the "next correct
code" of an incorrect code.

The recognition of dirty plates can be improved by convert-

; ? B g o Ly
e ot TSI A
ing the color image to a pure black-and-white image and [: 4 f)3 14 5é780
closing the gaps caused by the dirt. Find out about suitable 4 A ‘l'

procedures for this purpose and implement one of them.

The security department needs a database of license plates and vehicle owners and their status (cus-
tomer, company member, unwanted person, external parker, etc.). Can you help?

The license plate recognition turns out to be a great success for the security department. All its mem-
bers are very proud of it and the other members of the company admire the "sheriffs". The advertising
department now wants to use the data from the license plate table to honor customers as VIP cus-
tomers who are frequently and for a long time present in the supermarket. These have special parking
spaces near the elevator. Write a query to find VIP customers.

After some time, the VIP parking lots are occupied by pensioners and unemployed. Therefore, the
advertising department extends the criteria for VIP customers by a minimum of turnover with their
purchases. Because almost all customers use credit cards for payment, this is no problem. Improve VIP
customer query accordingly.

The advertising department finds that it would be helpful to know not only a customer's turnover but
also what they have bought. If it knows the interests of customers, it can provide them with special
offers and special prices. Determine the additional tables required for this and their columns in the
database. Write suitable queries.

The advertising department wants to know whether its advertising activities are successful. Do they
reach customers? Try to answer these questions based on the stored data.

How to ... 242

How To ...

Topic Chapter

... change the size of the screen areas? 2.3

.. resize the stage? 2.3,9.2,9.4,12.1,15.4,16.4,17.6
... change costumes? 2.4.4,8.1,9.3,9.6,16.2,17.3,17.6
.. “nail” sprites on stage”“? 4.4

... use loops? 24.1,2.4.4,3.2,7.4,10.1, ...
... use alternatives? 24.4,245,3.2,..16.1, ..

... start an animation? 23,24.2,24.4,3.1,3.2,4,, ..
... stop the execution of a script? 3.1

.. use character codes? 4.4,13.2,16.2,17.1

... display texts using sprites? 3,4.4,6,7, ..

... convert characters to uppercase? 13.2,16.2,17.1

.. use local variables? 3.1,3.2,5, ..

... declare script variables? 2.4,6,7.2,10.1, ...

... display a variable in a monitor? 44,6, ..

... display script variables in a monitor? 6

... change variable values with a slider? 4,5,7.8,12.1

.. use parallel processes? 2,3,4.3,5,8.4,11.3, ..

.. use lists? 2.4,3.2,7, ..

.. use higher list functions (MAP...OVER...)? 3.2,34,75,7.8,8,9.6,13.2,16.2
.. plot a diagram? 2.45,5,16.4

... output text on stage? 4.4

... write your own methods? 241, ..

... differentiate between global and local methods? 2.4,8,10.2,17.4, ...

... assign a type to a parameter ? 2,13.1, ..

... create a drop-down list for a parameter? 13.5,16.3

... find just invisible blocks? 24.1

... send messages? 24.2,2.44,3,..,16.3, ...

... access other sprites? 2,8, ..

... call methods of another object? 2.43,8, ..

... access attributes of other sprites? 2.4.3,2.44,5,8, ...

How to ...

.. send a message to specific objects?
.. send a message to another scene?
... work with multiple scenes?

.. respond to messages?

.. clone objects?

.. copy objects?

... find neighboring objects?

.. request user input?

.. use a drop-down list for user input?
.. export a project?

.. export global blocks?

.. export a sprite?

.. export a costume?

.. create your own library?

.. Copy a script to another sprite?

.. measure time?

.. respond to keystrokes?

.. run scripts step by step?

.. use recursion?

.. display a table permanently?

.. create new control structures?

.. use code as data?

.. use hyperblocks?

.. use metaprogramming?

.. use pre-compiled bocks?

.. merge sprites into an aggregation?
.. speed up the program flow?

.. access RGB values of pixels?

.. use pentrails?

... write JavaScript-functions?

.. react on colors?

.. produce sounds?

.. play sounds?

3.2,34, ..

3.2

2.4.5,3.2,3.4

3, ..

43,6,8, ..

44,8, ..

2.4.4,16.4
4.4,14.2,16.2,16.3, ..
14.2

5

5,12.1

5,10.2, 13.4

5

13.1

41,5

4.2,5

5,10.1, 10,2, 11.4

6
7.2,7.5,7.6,9.1,15.2
7,13.5
7.4,16.3,17.3
7.4,7.5,8,9.6, 10, ..
7.7

8

7.8

8.3
243,72,75,9.1, ..
3.2,3.4,9.4,9.86, ..
9.1,9.3
9.4,9.5,14.2
10.1,10.2, 17.6, 17.7
11, 16.2

11, 16.2

How to ... 244

... change sounds? 11,114

... draw transparently? 4,5,7.8,9.4,9.5,10.2,12.2
.. use an external server? 13.4,13.5

.. import a text file? 13.4,17.2

... create and use predicates? 14, 16.1

.. use a stack? 6, 15

.. hide blocks? 16.3

... draw the costume of a sprite in the program? 17.5

Index

245

Index

<attribute> of <a list> 47, 60, 79

<attribute> of <a sprite> 26, 27, 58, 64, 86ff, 96ff
<attribute> of block <a block> 87

<attribute> of costume <a costume> 110
<attribute> of sound <a sound> 138

2D graphic context 115

Abelson, Harold 19

abstraction 18

acceleration component 58
acceleration voltage 144

actor 9, 10, 27, 32

actuator 14

add <value> to <a list> 124
additional criterium 45

address 69, 184, 225
adjacency list 72

adjacency matrix 75

advertising department 240, 241
aggregate function 163
aggregation 94, 100, 243
algorithm 11, 13, 14, 20, 32, 66
algorithmic 14, 17

Alonzo 20

anchor 100

AND 11,98, 101, 103

animal 183, 221, 222, 223
animated image 81

animation 14, 32, 35, 66, 242
anomaly in data 208
anonymous 20

answer 10ff, 23, 37ff, 44ff, 241
append 70, 79, 153, 156, 158, 181, 191
aquarium 57

archaeology 225

area-filling curve 106

array 75

art 16,44

artificial intelligence 36

artificial plant 180

ask <a sprite> for <a script> 27, 87,91, 128
ask <question> and wait 60, 169, 186
assignment 72

assign a type 242

astronomer 37, 38, 39, 40, 41
astrophysicist 37

astrophysics 37

atomic data 69

atomic quantity 47

attached parts 35

attribute 18, 26ff, 46, 86, 91, 161ff, 242
Audio Comp 138

authentication 54, 55

automaton 184, 186, 187, 188, 195, 196, 197
automata theory 207

automated system 12

automatic time announcements 188
automation process 11

autonomous driving 12

auxiliary method 23, 228

average distance 40

averaging 122,124

axiom 180, 181

background image 31, 33,57
banking system 11
Barabasi, Albert-Laszlo 216
bar width 122, 124
barcode 122, 125, 137
- generator 137
-scanner 122,231
basic equation of mechanics 64, 65
Beauty and Joy of Computing 19
bicycle rental station 47
binary tree 85
bioinformatics 154
bistro 32, 35
black and white image 85,117, 118
blank 11, 90
block 19, 20, 23ff
- editor 23,24, 126, 163, 169
-name 24,70
Boszorményi, LaszIé 106
Borges, Jorge Luis 44
bottom-up 19
Brenner freeway 51
broadcast 37ff
broadcast to <a sprite> 125
browser 19, 20
button 21, 52ff, 67, 68, 93, 103, 123, 125ff, 226
BYOB 20

Caesar encryption 59, 152
Caesar method 59

calculation inaccuracies 146
call 27, 87, 88, 90, 91, 193, 242
camera 17, 20, 126, 137, 231, 235
capacitor 144,145, 146

car 14,51, 80, 137

car park 240

carrier pigeon 10

Cartesian product 79

CAS 168

category 9, 21, 24, 46, 161
C-curve 121

cdr 80

cell phone 51

Index

246

cellular automaton 195, 198
certainty 8, 54
chain rule 179
character 7, 10, 49, 60, 69, 122ff
- code 152
- recognition 49, 237, 241
-set 9,137, 241
charging station 56
check digit 122, 137
check mark 21,59, 61, 67, 123, 124
checking machine 190
children 16, 18, 24, 34, 183, 223
Chinese room 36
chord 140, 141
ciphertext 59, 152, 157, 159, 160
city map 48
class 18, 19, 46, 88, 221
classification 14
classroom 10, 16, 23, 32, 37
classroom project 23
click 21ff, 45, 68ff, 93, 100, 123, 140, 158ff
client 52, 161
clock 64, 65,103
clone 18, 23ff, 86ff, 93, 96, 99, 101, 212, 217, 227
- block 18
-command 88
cloning 18, 58, 68, 89, 100, 218
code 9, 20, 27, 60ff, 87ff, 122ff, 137, 190, 235ff
coil 144, 146
color
- change 14, 122
- code 236
- counter 128
-cube 107,111, 112,121
- field 123
- image 84, 85, 241
- mixer 61
- model 61
-range 84
- reduction process 236
- space 107,108, 235
- space reduction 132
coloring 215, 220
column 48, 82, 158, 167, 235, 241
<columns> of <a list> 83
combinations 79
combine <a list> using <an operator> 78, 83
command 21ff, 65, 68, 76, 87, 89, 91ff
- C-shape 76, 193
- sequence 69, 76, 155, 192, 202
comment 123
communication 7,8, 10, 11, 16, 27, 37, 42,55, 125
- in a given context 31
- partner 10, 11, 55
- process 10
- with a clear question 44
- with an open question 37
- without human partner 49

competency 7, 8, 13, 46
computability 190
computer 7ff, 34, 47ff, 137, 157, 161, 188ff
- algebra 168
- science 7ff, 16, 19, 20, 46, 59, 161, 207
- science and society 9, 13, 51, 122
- scientist 207
- system 31
concatenation 149
connection 7, 10, 33,52, 72, 99, 100, 158ff
- data 162
- of networks 214
connectivity 214
consequences of automation 12
consonant 186, 201
constructor 14
content area 8,9,12,13
context 9ff, 24ff, 37ff, 53, 61, 68, 87, 91, 145, 183
- cultural 10
-menu 23,59, 63, 69, 76, 84ff, 123ff, 157ff
- misinterpreted 39
- missing 12
- of a sprite 87
- representation 14
-shared 9
- social 10
control
-data 14
- instruction 202
- output 67
- palette 25, 27, 75, 86, 87, 123
- structure 19, 25, 75ff, 193, 202, 217, 243
-value 25
cooperation 63
cooperative behavior 196
coordinate system 29, 58, 208, 212
copy 18, 69, 77, 89, 190, 201
copy of a list 77
copying machine 190
correlation 12, 97
costume 17, 21ff, 56ff, 86, 89, 100ff
- change 31
-area 27,123,126
- library 59
counter 95, 96
coupled Turing machine 190, 191, 193, 201
creativity 16
crosshair tool 104
cryptography 14
curriculum 7,12, 13
customer 31, 32, 53, 214, 241
cut from 109
cutoff-frequency 143

Index

247

Darwinism 196

data 7ff, 20ff

- exchange 23, 37, 157
- packet 10

- point 30

- source 161

- stream 14

- structure 7, 10, 12, 13, 14, 19, 20, 85, 221
-type 7,14, 47,149

- transferable 39

- transmitted 41, 52

- unsorted 70

database 7, 11, 15, 20, 46, 48, 161ff, 235, 236, 241

data-processing system 36
decidability 190
decryption 59, 60
delegation 18, 19, 88, 94, 98
derivative 173, 174, 175, 176, 179
detach from 100
diagram 8, 29, 30, 64, 143, 196, 200, 220, 242
dictionary 47, 85
didactic 7, 8,12, 13, 31
digital

- assistant 11

- circuit 98

- media 16, 122

- simulator 98, 100, 103
Dijkstra, Edsger Wybe 5, 72
distance learning 37, 41
distribution of links 216
DNA 6, 154, 155, 156, 167
draggable box 59
dragon curve 121
drawing command 181, 202
drawing program 27,94
drip painting 115
dummy variable 77
dynamic cloning 18, 88, 93

EAN-8 code 122,124
echo chamber 12, 45, 230
edge detection 14,117,118, 119, 121
editor 24, 27, 32,67, 68, 104
education 16, 19, 45
electric field 145, 146
electron 144, 147
elementary

- algorithms 25

- machines 190, 192

- magnets 93

- Turing machines 190

Eliza 42
email address 184
emoticon 10
empty

- block 63

- list 69

-slot 87

encryption 52,59, 60, 62, 92, 152

ENT practice 143

epidemic 23

ER diagram 161

error 19, 63, 67ff, 127, 156, 170, 204, 241
- free 205
- message 161, 202, 206
- state 184, 203

ethical boundary 12

ethical question 196

evaluation 7, 11, 46, 48, 49, 131, 193, 225, 236

evaluation criterium 44, 225
event 32,63, 97

evolution 6, 221

exciter 63, 64, 65
experimental approach 44, 63
expert 12,40

Export blocks ... 63,114, 151
export... 63,126, 157
export/import function 29
eye 51, 133,135

face color 132
face recognition 49, 132
fact 8,41, 44
feed-forward 102
Fiat-Shamir protocol 54
file 10, 20, 24, 40, 47, 59, 64, 90ff, 138, 151ff
- contents 47
- export 40
-menu 29, 59, 63, 126, 138, 149
-name 47, 158
filing cabinet 89
final state 184, 190
find first item <a predicate> in <a list> 78
fine arts 45
finite automaton 184, 201, 203
Fiona 89, 90, 91
floating point numbers 179
flow of goods 216
flu 23
footstep 67
for all sprites 23, 25, 63, 149, 169
for each <item> in <a list> 78
for this sprite only 23, 25, 123, 169
force 147
forgetting 97
for-loop 75, 153
framework 7, 12,13, 14,17, 32,55, 61, 63
framework of knowledge 13
free programming environment 19

frequency 11, 62, 64, 65, 103, 142, 143, 157, 159

frequency analysis 157, 159

friction constant 65

function calculator 179

function term 168, 169, 173, 175, 179
functionally programming 168

fuzzy questions 46

Index

248

galaxy 37, 38, 40, 41, 49
Gapminder foundation 208
gate 98, 101, 103
gawking 16
general education 7,9, 12, 13
generator 103, 106
genetic algorithm 167
get blocks 63
ghost effect 145
Gl 7,8,13
global
- block 87,91
- method 63, 75, 87
- variable 25, 27, 49, 50, 54, 59, 69, 72, 196, 228
Google 44,226
graph 25,72,121, 176,179, 184
graphical
- representation 32
- programming environment 17
- programming language 19, 111, 207
graphics 14, 17,59, 104, 113, 118, 138
- editor 27, 32
- format 32
- library 227
- program 17,32,123, 126
gravitational force 58
grayring 27,77,78,87,91, 152
grayscale image 117, 118
green flag 22, 32, 58ff, 125, 131, 144, 157, 237
greengrocer 31
grid 195, 197
gross national product 44, 196
group work 64
Gundolf de Jong 169, 172, 176, 178

Harvey, Brian 19

hat block 27

head position 190, 191, 192
hearing test 142, 143

Hertz, Heinrich 66
Helmholtz coils 144, 146
hide blocks... 193

hide variable <a variable> 67
high frequency trading 11
higher data structure 75
higher function 40, 83

higher level list operation 77, 79, 210
Hilbert curve 104, 106
Hooke's law 65

HSV color model 110

http server 157, 161

hub 216

human communication 11
human partner 37, 44
human partners 37
hydrogen bond 214
hyperblock 81, 83, 85, 143, 243
hyphenation 186, 201

IBAN number 201
idea 16, 63, 66
identifier 24, 123
image 14, 34, 37ff, 49, 58, 121, 126, 191, 192
-data 37,40
- dimensions 40
- enhancement 14
- manipulation 84
- processing 122
- recognition 122
- of scripts 63
immunization 23
implementation 7, 8, 13, 20, 71, 89, 92, 179
import... 157, 208
importance 10, 13, 14, 190, 225, 230
independent process 87
index variable 76
infection 23, 27
infection chain 214
infinite loops 19
influenza epidemic 23
informatics 10, 12, 14, 41
- concepts 20
- systems 13, 132
information 7ff, 31ff, 65, 157, 208, 225
- acquisition 13
- aspect 12
- retrieval 12
- society 7
- space 45
-system 11,17, 31
- technology 7, 12
- theory 8
- transfer scheme 9
- transport 10
inheritance 18, 88, 94, 98
inherited attribute 18
inherited method 18
initial state 184, 190
initial values 25, 26, 40, 69
input 14, 36, 59, 60, 90ff, 169, 170, 184ff, 210, 243
- alphabet 186
- method 203
- options 163
- Slot Options 163
instance variable 64
intelligence 12, 36, 73, 230
interesting content 210, 225
Internet 19, 20, 49, 71, 121, 125, 154, 161, 208ff
interpretation 7,9, 11, 32, 46, 51
interpreter 205
intrapersonal 9
irony 35
Ising model 201
isolated pixels 121
isolated points 118
IT system 12,13, 16, 37, 44, 161, 207
iterated prisoner's dilemma 195

Index

249

JavaScript 47, 110ff, 118, 121, 139, 170, 243
- extensions 142
- function 115, 117
JK-master-slave-flip-flop 103
join 88,124,149, 210
JSON 47

keep items <a predicate> from <a list> 78
Kevin 186, 189
key 24,47,54,59, 60, 152, 153, 167
keyboard 140
keystroke 59, 243
keyword 49, 225, 230
knowledge 8ff, 37, 44ff, 83, 111, 144, 166
- based vote 225
-gap §,11,13
- pyramid 8,9
- socienty 13,44
Koch curve 104, 105
Kochel lake 51

labyrinth 97
lambda calculus 20
language definition 169, 206
laptop 52,53, 235
large left-hand machine 190
large right-hand machine 190
laser 122ff, 232, 233, 237, 240
launch <a script> 87, 90, 100, 101, 141
lava stone garden 56
lawn mower 56
lazy evaluation 169
learning
- environment 20
- Pavlovian 95
- process 18
-robot 94
learning step 95
LED 98, 102
<length> of <a list> 80
length of text <a string> 60, 149
letter <number> of <a string> 149
Levenshtein distance 167
library 20, 46, 59, 68, 78, 110, 114, 118, 138, 149ff
license plate 14, 49ff, 117, 137, 237, 238, 239, 241
-number 51
- recognition 49, 237, 241
Lieberman, Henry 18, 88
Lindenmayer, Aristid 180
line gap 118
line graphics 104
linear cellular automaton 201
linear data structure 13, 14
linked websites 214
link 9,12, 214, 215, 216, 217, 225, 226, 230
LISP 19, 20

list 13ff, 24ff
- element 82
-item 78
-, nested 47
- of commands 87
- of numbers 70
- operation 81
- structure 75, 82
- variable 89
- like structures 14
local
- attribute 18, 96
- list 89
- method 18, 23ff, 63, 86ff, 125, 126, 128, 221
- reporter 87
- variable 25, 33, 58, 65, 71, 86, 93, 98, 144ff
logical
- circuit 98
- expression 169
-value 47, 69
Logln process 53
LOGO 202, 203, 207
Looks palette 21,67, 117
loop 27, 38, 70, 76, 123, 167, 202, 205, 206
Lorenz force 147
lowercase 152, 159, 202
L-System 180

machine 8,9, 11, 46, 48, 51, 190ff
- learning 12
- value 199
macro 69
macro language 190, 191
magnet 93
magnetic field 93, 144, 145, 146, 147
magnetic flux density 146
mail address 184, 185
mail server 184
Make a block 23, 149
Make a variable 25, 123
manual 24, 81, 82
map <a script> over <a list> 40ff, 77ff, 117ff, 152
mathematics 66,173, 221
matrix 75, 76, 82, 83, 85
- multiplication 81, 83
- multiplication 83
- product 82
Mealy automaton 186
meaning 8,9, 11,12, 13, 14, 42, 46, 154, 225
measurement 9
media 7, 16, 17, 18, 62, 81
- competence 16
- consumption 16
- education 4, 16
- environment 17
medium 11
memory area 69
menu bar 21, 22

Index

250

message 7ff, 25ff, 52, 53, 58, 64, 65, 93, 204, 243
meta tag 225

metaphor 44, 45
metaprogramming 87, 243
method 12, 17ff, 49, 73, 87ff, 111ff, 169ff
microphone 20

MIT 19

model 7,13, 15, 31, 110

modern painting 115

Mobnig, Jens 19, 140, 208, 210
monitor 59, 67, 242

Moore neighborhood 201
motion 21, 104

motivation 14, 32, 34, 63

mouse button 158

mouse click 19, 24, 100, 215, 217
mouse-controlled interface 16
mouth 76, 133, 135, 186

move <number> steps 205
Mr.D. 72,74

multimedia property 14

multiple stages 37

multiplier 23, 27, 30

music 16,17, 52, 140

mutation rate 223

my <attribute> 27, 86

my <parts> 101

NAND 98, 101, 102, 103

natural constant 147

natural number 77

navigation system 188

neighborhood 118, 196

neighbors 27,73, 119, 196, 197, 199, 201
nested alternatives 184, 204

network 10, 12, 20, 44, 54, 102, 214ff, 225, 230
network node 215

neural network 12, 214, 237

neuron 95, 96

new block 68ff, 75ff, 123, 124, 149, 159, 188, 193
New category 24, 191

New palette 161

New scene 29

new script 88

node 73, 74, 215, 216, 217, 220

node list 217

node number 220

non-verbal communication 10

north pole 93

nose 133,135

number 13ff, 47ff, 115, 121, 137, 149ff
number of links 226

numerical

- effect 148

- parameter 76

-value 14, 124

object 18ff, 47, 63, 64, 86ff, 117ff, 211ff, 231, 243
object <an object> 25

object detection 14, 117

object oriented programming (OOP) 18ff, 31, 86ff
ocean sonde 9

OCR (optical character recognition) 237
octagon 127

offspring 221, 224

old stars 41

onClick event 61

opacity 61

open in dialog... 76, 163

operating system 9

operator 163

Operators palette 60, 124, 149, 152
opinion leader 44

opportunist 196

options... 163

OR 101, 103

outbound link 226

output 14, 21ff, 60ff, 88, 98ff, 187, 207, 242
output socket 100

output window 21, 67, 88, 100, 123, 157
overlap length 155, 156

own blocks 22

page list 227

page rank 225, 226, 229, 230

page rank calculation 226, 230

paid ranking 45

palette 18, 23, 24, 69, 86, 104, 137, 161, 193
palindrome 167

parameter 20ff, 69, 75, 87ff, 115, 149, 158ff
parent 18, 24

parent property 18

Pareto distribution 216

parking garage 237

parser 169, 172, 173,176, 183, 203, 204
parsing 176, 179

partial

- automaton 201

- list 47, 81

- machine 199

parts 100

passport photo 132, 133

password 92, 201

paste on <a sprite> 109

path search 73

patient 42,43

pause button 22

Peano curve 121

pen 29, 30, 61ff, 101ff, 137, 202, 207, 219, 222ff
Pen palette 29, 107, 138

pen trails 104, 109

PenDown command 205

PenUp command 205

personal data 34

pet food 34

Index

251

phase transition 215
PHP 157, 161
PHPmyAdmin 161
physical computing 14, 20
physical representation 9
physics 61, 63, 65, 66, 144, 147
piano keyboard 140
pivot element 71
pixel graphics 109
pixel list 81,110,117, 128
pixels 39ff, 107ff, 198, 207, 231, 237, 243
plain text 206
planet 58,121
planetary orbit 58
planetary transit 121
plate spacing 145
platitudes 42
play note <number> for <number> beats 140
play sound <a sound> until done 188
playback speed 139
plot sound <a sound> 139
png file 123
Poisson distribution 215
police computer 51
political
- content 34
- discourse 12
-issues 7
- opinion-forming 216
politician 34
precompiled 40, 84, 85, 117, 119, 243
predicate 23, 78, 85, 94, 96, 169ff, 184, 185, 201
prisoner's dilemma 195
probability of infection 23
problem solving 14, 16, 17, 63
product pride 17
production system 20
professional tool 16
program 11, 18, 19, 23ff
-crash 19
- execution 19
- flow 67
- sequence 19
programming language 7, 19, 75, 202, 206
project 19ff, 47,52, 61ff, 125, 126, 144, 157ff
projector 38, 41
pronounce 80, 186, 188, 189
protocol 10, 54, 55, 214
prototype 18, 23ff, 58, 87ff, 218, 226, 227
prover 54
provider 45, 52
psychiatrist 42, 43
purpose 11, 13, 61, 188, 241

query 45,46, 131, 161, 163, 164, 241
question 10ff, 23, 37ff, 172, 215, 226
queue 13,75, 85, 89, 92

quicksort 71

random network 215, 216
random number 55, 70, 71, 78, 83
randomness 115, 183
rank of a website 226
ranking 45
rationality 44
real time 81, 84
reasoning 7, 13
received data 9, 10
receiver 9
recipient 34
recursion depth 106, 181
recursive 71, 77, 85, 150, 194
- curves 105
- list operations 80
- operations 169
- programming 80
red button 22
red mark 19
reference 24, 25, 26, 44, 69, 77, 89, 226
relation 46, 214
relevance 12, 13
remote partner 37
replace item <number> of <a list> with <this> 159
replacing 151
report <this> 77, 150
reporter 23, 43,87, 89,91, 149
representation 7ff, 49, 65, 84, 99, 121, 176, 221
reshape <a list> to <dimensions> 79
resonance 66
RGB 40, 49, 61, 107ff, 232, 233, 243
RGB value 40, 110,117, 129, 232, 233, 243
rhombus 127
right-click 126, 193
ringified 27
robot 20, 56, 94, 95
role 10, 11, 15, 16, 35
rotation center 104
row 75, 76, 82ff, 120, 167
RS-FlipFlop 103
rule system 180, 181
rule 8,11, 36,173, 181, 183
rules of the game 197
run 23ff, 55ff, 87ff, 167, 201, 205, 208, 243
run <a script> 22, 87

sample 7,139, 140, 143

sample rate 139

say <something> for <n> secs 67
scalar product 82, 83

scalefree network 216, 219
scanner 137, 207, 231

scenario 12,37, 44, 49

scene 29, 37, 38, 39, 40, 52, 53, 243
scene change 52

Scheme 19

school computer science 7,9, 12
school topic 10

Index 252
schooling 57 SnapMinder 208, 210, 212, 213
SciSnap! 46 snowflake curve 105

Scratch 19, 22, 110
screen 19, 21, 29, 58ff, 136, 147, 163, 191ff
screen coordinate 192
screenshot 44
script 20ff, 50, 60ff
-area 24,63,123
- variable 26, 124, 129
search engine 11, 45, 225, 230
Searle, John 36
second project 29
secure connection 52
security aspect 53
security check 170
security department 237, 240, 241
select query 164
selection box 24
selection list 162, 163, 169, 193
selection sort 70
self portrait 34
self initialization 58
self reinforcing process 45
semantics 7,9, 12
sender 9
Sensing palette 25, 26, 27, 64, 123, 169
sensor value 14, 97
separate process 90
separator 184, 186, 187, 188, 190
seroconversion time 23, 27
server 20,52, 53,157,158, 161, 166, 244
-address 157
-room 52
set <varname> to <value> 25, 89ff, 123ff, 145, 220
settings 21, 22, 182
settings menu 21, 105, 107, 112, 142, 144, 170
Shannon, Claude 8
shark 57
shortest distance 73
shortest paths 72
show variable <varname> 67
side effect 32,77
Sierpinski curve 121
signal 95, 98
signed number 179
simulation 10, 19ff, 58, 63, 66, 103, 191, 197, 229
- data 25
- program 226
skill 16
slider 21, 61, 67, 84, 121, 144, 208, 242
slider variable 145, 146
small left machine 190
small right machine 190
small world phenomenon 215
smart scale 231, 237
smartphone 16, 19, 137
Snap! 1, 2, 3ff
Snap! screen 21

social
- consequence 16,17,132
- credit 137
-issue 7,137
- life 16
- network 16
- prosperity 196
- relation 214, 215
- significance 12
- system 196, 230
socially relevant issue 12, 34
socio-political question 230
socket 98,99, 100, 101, 102
sorted data 70
sorting 69, 70,71
sorting method 85
sound 14,17, 21, 138ff, 143,, 186, 188, 243, 244
- files 188
- named <soundname> 139
- palette 138
- program 17
- recorder 138
Sounds... 138
source code 161
south pole 93
space bar 125,131, 142
spatula picture 121
special character 23
special offer 241
specialized topic 12
speech bubble 63
spin grid 201
spiral spring 65
split <a string> by <a char> 87, 149, 152, 188
spread of disease 216
spreadsheet program 208
spring constant 65
spring pendulum 63, 64
sprite 18, 21, 24, 56ff, 86ff, 123ff
sprite area 25, 63, 86
sprite coral 100
sprite symbol 100
SQL 11, 46, 48, 161, 163, 164, 166
- block 166
- databases 161
- library 166
- query 46, 48, 161, 163, 164
-server 11,48, 161, 162, 166
- syntax 46
stack 13,75, 85, 92, 180, 181, 182, 183, 244
stack operation 181
stage 21ff, 56ff, 99ff, 125, 131ff
several stages 17, 21
stage size 231
Stage size ... 21
standard position 190, 191

Index

253

start node 216
state 9, 13, 17ff, 58, 100, 104, 109, 161, 180ff
- diagram 184, 195, 204
- graph 190, 204
- of data set 14
- of the receiver 9
static clone 88
statistical data 208
statistics 33, 166
status 9, 26, 27, 196, 241
step size 75
stepping speed 67
stereo sound 140
stock exchange 11
story 7,10, 12, 14, 31, 32, 35
streaming service 52
string 14, 47, 59, 60, 69, 79, 122, 149ff
structogram 122
structured types 69
sub
-list 76, 77, 217, 220
- problem 18, 136
- routine 19
- string 150
-text 9
sun system 58, 121
supermarket 122, 161, 231, 241
Sussman, Gerald and Julie 19
swimmer 33
switch to scene <scene> 37
switch 38, 98, 100, 101
switching time 101, 102, 103
syllable 186, 188, 189
symbol 8,9, 24, 49
syntax 7,9, 10, 11, 63, 75, 172, 179, 207
syntax diagram 168, 169, 171, 184, 202

table 14, 25, 48, 76,122, 161, 167, 204, 210, 225ff

- data 208

- of contents 225

-view 157
tab 21, 209
target node 216
teacher training 16
teacher 7, 16, 216
teaching 7, 8, 12, 16, 32, 220
teaching language 19
teamwork 18
technical

- competence 7

- detail 214

- fault 216

- fundamental 16

-issue 7,11

- knowledge 7

- language 32

-link 214

- topic 10, 13

television program 44
tell <a sprite> to <a script> 24ff, 87, 90, 125, 146
temperature 9
template 94, 187
text 10ff, 49, 59, 63, 92, 137, 149ff, 225, 227, 242
- comprehension 10
- file 157, 208
-input 60
- server 157
- based language 111, 202, 207
- files 157
the south 44, 45
thread 64, 65
threshold value 95, 117, 118, 121
tile 19, 21, 22
timer 64
timing system 56
title text 193
toll barrier 49, 51
tool 7, 12, 13, 15, 16, 35, 138, 190, 208, 237
tool training 7, 12
top-down 18, 19, 168, 169
torus 119, 199
touch sensor 94, 95, 96
towers of Hanoi 67, 68
trace 104
trading partner 195
trading point 196, 197
trading volume 196
traffic sign 126, 128, 131, 132, 137
training 7, 12, 16
transparency 32, 61, 84, 110, 115ff, 128ff, 145ff
transposed matrix 82, 83
travel literature 44
trial and error 132,133, 221
trigonometric function 179
troubleshooting 67, 68
truth 8
tube 144, 145
tuple 73,74
Turbo mode 105
Turing
- adder 190
- block 191
- machine 190
- tape 190
turn command 205
turtle 180, 181, 182, 202, 207
- graphics 104, 105
- program 202
two-dimensional matrix 75
txt file 157

ultrasonic echo 95

ultrasonic sensor 95, 96

UML diagram 98

Unicode 60, 152

unicode <number> as letter 149, 152

Index 254

unicode of <char> 149, 152

university 13,16

unsorted numbers 78

uppercase 152, 186, 202, 242

url <text> 20, 158

user 11, 12, 45ff, 91, 166, 169, 210, 243
- data 53

- interface 60

-names 184

vaccination protection 216
vacuum cleaner 44
variable 11, 19ff, 47ff, 84ff, 121ff
-name 61, 67
- palette 21, 25, 60, 69, 70, 75, 77, 123, 125, 126
vector product 82
vector 83, 147
velocity component 58, 94, 147
verification 51
verifier 54
video image 81
- surveillance 137
- telephony 10
Vigenére, Cifrario di 152, 153, 186
Vigenére-Encryption 152
VIP parking 241
Visible stepping 67, 68
visual programming languages 14
visualizability 14
visualization 7, 10, 56, 63, 69, 139, 208
volume 142
von Neumann, John 195, 196
- neighborhood 195, 201
vowel 186

wait <number> secs 67
wait until <predicate> 67
warp 26, 71, 78, 104, 106, 150
watcher 69
WAV format 138
web

-author 225

- crawler 225

- site 214, 225, 229
weight 95, 226, 229
Weizenbaum, Joseph 42
Wikipedia 8, 44
with inputs 26, 87, 90
Wolfram, Stephen 201
working tape 191

XML file 126, 158
XOR 62,101, 103
XOR encryption 62

zero knowledge protocol 54
zero position 64, 65

Index 255

