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Preface 

This script describes the ML.Sprite-Library with Snap! blocks, which is intended for (rela-

tively) fast processing of large amounts of data. "Large" data volumes are almost never 

used in schools and initial university education - because they were hardly freely available 

some time ago, and money is scarce in education. In the meantime, however, there are 

large amounts of data in abundance, be it as a data collection on the Internet or as image 

files, because they are also "large". Education thus has the chance to deal with relevant 

data and thus find numerous points of contact with the field of "computer science and 

society". In the long run they are more important than any programming tricks in terms of 

general education. 

Especially for beginners it is important to "see" what they are doing with their program-

ming attempts. Snap!'s fantastic visualization capabilities are complemented by the 

ML.Sprite-Library, which includes library functions for graphics and images that, like the 

Snap! tables, quickly display the results of operations. Speed is important in this area be-

cause it supports experimental work in trial and error style. If you must wait too long, you 

won't try that much. The ML.Sprite-Library supports this approach by implementing most 

time-critical functions in JavaScript. Besides, these blocks also show how text-based pro-

gramming can be senseful integrated into a graphical development environment. 

The ML.Sprite-Library contains blocks from the area of data visualization and table han-

dling, which is supported by the introduction of the data type table. In addition, functions 

of linear algebra with the data types vector and matrix, the solution of linear systems of 

equations and interpolation by polynomials are available. SQL queries are integrated, neu-

ral networks from perceptrons can be easily created and trained, image operations can be 

quickly executed via kernels as well as through vector and matrix operations. The examples 

show how this can be done. But they always show only one way - invent others and better 

ones for yourself! 

Unlike the first version, the ML.Sprite-Library is divided into six prototypes, which can be 

loaded as attached parts of the overall sprite called "Arthur&Ina" or as individual parts. 

This limits the number of visible blocks. You can limit yourself to the prototypes that are 

currently needed. Each prototype contains a small example script that illustrates its use. 

This book is a translation from German. Unfortunately, I do not speak English well, so it will 

be bumpy. I apologize for that. Be strong and hold it! Many thanks for the wonderful help 

of the DeepL1 translation program. I would probably never have finished without these. 

I would like to thank Jens Mönig and Rick Hessman very much for their support and the 

numerous discussions. 

I wish you a lot of fun working with Snap! and the prototypes of the ML.Sprite-Library 

from Arthur and Ina! 

Goettingen, 13 January 2020 

 

 
1 https://www.deepl.com/translator 
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1 Artificial Intelligence and School 

The term "artificial intelligence" is currently and for the foreseeable future more than cur-

rent. In Germany, the Year of Science 2019 has been declared the "Year of Artificial Intelli-

gence". In the field of "digitalization", the term is shaping discussions in the media, busi-

ness and politics. Informatic didactic contributions are also increasingly being made on the 

subject. 

In school informatics the topic is not really new. For three to four decades now, there have 

been examples of neural networks (NNs) suitable for use in schools, for example, which 

are developed and trained by the pupils themselves [Baumann] [Modrow1]. Such networks 

are clear and easy to understand, encourage students to work independently and then to 

discuss philosophical implications based on their professional experience [Modrow2]. 

Above all, however, they are small. This is exactly the difference to the current NNs: they 

are big. According to Ian Goodfellow [Deep Learning], one of the leading developers in this 

field, basically nothing has changed compared to the old small networks. The structure and 

methods have (almost) remained the same, but of course they have been improved. What 

has changed is the performance of the computers on which the NNs run and the amount 

of data available to train them. This, however, leaves older findings valid, such as Marvin 

Minsky's [Minsky] 1967 findings on the equivalence of NNs and finite automata. The result 

is no wonder, because the model of finite automata has its roots in the first NNs. However, 

such results help to classify a topic: if the term "learning" tends to bring brains to mind, 

the finite automaton tends to bring the field to the level of vending machines. 

But we have a problem with that. In school, real applications are usually reduced to small 

model systems that still show some of the original properties. If, however, the property of 

being large in current neural networks is what makes the difference to earlier versions, the 

restriction to small networks is at least questionable. Such a thing could have been - and 

has been - done some decades ago. So, what is new about this topic?  

The suggestions for treating large NNs in class often consist of training finished NNs using 

finished training data. Students then watch the net learn, slowly improving its results. You 

don't need a real NN for this experience, a video was enough. You can't see that the net is 

big and you can't see why this size is important from watching it. All you can see is that the 

results are improving. You don't learn anything from this experience alone from NNs. A 

discussion of the effects of NNs then is based on the information that they exist and that 

they can learn. Further technical basics are missing, so that this discussion could take place 

just as well in other subjects. 
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Let us compare the situation with an example from physics. The relatively new image of a 

black hole [SZ] shows that there are black holes and that they "swallow" matter. However, 

this information alone does not integrate the topic into the physics lesson, because a tech-

nical treatment of black holes is largely beyond the possibilities of the school. But within a 

subject area "gravitation", which contains numerous activities, historical and social refer-

ences, typical problems of school physics, etc., the picture links school physics with "sci-

ence after school", shows ways to a more profound occupation with it and, for example, 

encourages reflection on whether the learners see a personal perspective in this area - or 

not. 

What do we learn from this? 

The pure introduction of new technologies has no place in school - there are other channels 

for shows. The pure information that such technologies exist is also not enough to assign 

the topic to a specific subject. On the contrary, if you limit yourself to that, then it would 

be better to locate subjects in which, for example, the social or philosophical effects are 

discussed, and the topic is thus networked with other aspects. Only the didactic reduction 

of a question to a complexity level, on which the learners can work as independently and 

imaginatively as possible, makes the topic pedagogically fruitful. 

In the field of artificial intelligence, it is not the passive observation of the learning 

of networks in schools that is important, but the active promotion of the understand-

ing of human learners for the fundamentals and implications of this process. 

New for the school are the tools we can use today. The visualization possibilities on the 

one hand and the use of powerful libraries on the other hand make it possible for the 

learners to explore simple first approaches on their own and thus experience the conse-

quences of this expansion. In this work the meaning of the terms used becomes clear and 

thus assessable. The term "learning" has, for example, in the field of machine learning 

largely the meaning of "parameter adjustment". This does not quite correspond to the 

common meaning - and thus its use in the media, for example. The number of parameters 

in e.g. small perceptron networks increases immensely with their expansion - and thus the 

time required for training as well as the number of training data required. Extrapolation to 

really large networks therefore raises the question where these resources come from. 

When it comes to training duration, the parallelizability of the algorithms and the speed of 

the computers is decisive, but when it comes to data volumes, their sources - and that is 

often us - are decisive. So, we can't be indifferent to the application of AI systems, it directly 

leads to problems with data protection and is therefore a current socio-political topic. This 

also applies to the data itself. Working on machine learning topics quickly teaches us that 

there is not much to do with the freely available data itself. It often only becomes interest-

ing when different data sources are linked. However, this linkage is usually not made by 

statistical quantities, but by the individual sources themselves - i.e. us. For example, does 

the spread of a disease have anything to do with the behaviour of population groups? We 

can actually only answer this conclusively when we know whether the disease occurs more 

frequently in precisely these people than in others. Otherwise, we will not get very far 

beyond suspicions. 
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Working with machine learning requires learning time - and this is only available to a lim-

ited extent. The more powerful the instruction set used, the more time is left for the ques-

tion of the consequences. The ML.Sprite-library is designed to free up this time. 

One more remark on this: I think that besides the usual learning of technical contents and 

methods, especially in the field of computer science, a good deal of creativity belongs in 

the classroom. Computer science provides wonderful tools such as Snap! for this very pur-

pose. If the school concentrates exclusively on teaching facts and data as well as practicing 

the application of calculations, there is the danger that the students never experience what 

it is like to discover and understand connections and backgrounds themselves or to find 

and test their own solutions for interesting problems. This would be a bit sad, because a 

chance to develop a creative personality, aware of its possibilities and limits, would be 

missed at least in this field. The goal of the ML.Sprite-library is therefore to provide a 

toolbox for the learners, which is suitable for their own projects in the field of machine 

learning. It is explicitly not the goal to provide ready-made solutions for certain problems. 
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2 Machine Learning 

The term "machine learning" is often used as a synonym for "artificial intelligence" or "neu-

ral networks". However, this limitation is not true. For example, the definition found on 

the SAP page [SAP] is more precise: 

Machine learning technology teaches computers to perform tasks by learning from 

data instead of being programmed for the tasks. 

"Learning from data" can be understood as adapting the parameters of a function. A data 

set (image, table, character string, ...) is presented as input vector E to a machine. It calcu-

lates an output value k from this, which assigns the input to a category ("It is a cat", "Fea-

ture present" (or not), "The word 'car'", ...). 

𝑓(𝑬) = 𝑘 

This assignment can take place in very different ways. For example, you can adjust the 

parameters of a polynomial, search for similar input values ("k-next neighbours"), work 

with decision trees, use Bayesian filters, ... - or even train an NN. All these methods have 

in common that the "machine" contains a set of parameters that can be changed. The ma-

chine "learns from data" by repeatedly reading in a data set, calculating the output value 

from this using the current parameter set, and then comparing this output with the "de-

sired" output value using some method. If there is a deviation, it changes the parameters 

so that the output at least approaches the "desired" value. "Desired" values may be known 

in advance ("The image is a cat image"), may come from outside e.g. from a "trainer" ("su-

pervised learning") or may be generated by the machine itself ("unsupervised learning"), 

e.g. by extracting features from many training data ("clustering"). In all cases, the machine 

does not "learn" anything, but adapts parameters according to a given procedure. 

This approach, too, has long been widespread in schools. "Learning Nimm-games” etc. can 

already be found in the first computer science textbooks. What is new again is the scope 

of the required training data. A large NN can have billions of parameters that need to be 

trained - and this requires "a lot of" training data. Another new feature is that these data 

are available on the net. So, if applications available "for free" are paid "with data", then 

we now also know how and why this happens. 

If you look at common textbooks on machine learning [Grus] [Albon], you won't find much 

about NNs, but a lot about data handling. These must be normalized, for example, in order 

to make the many input data, which can come from very different sources, compatible. For 

example, if we photograph many dogs with an older digital camera and many cats with a 

newer one, then an NN would very likely learn from these images that dog images are 

smaller than cat images.  

The preparation of data now is a very manual activity. It can be done step by step, tested 

and then automated with simple algorithms. Testing is greatly facilitated if the structure of 

the data is easy to visualize, e.g. in tables or as a graph. And algorithms are simple if they 

have a clear structure, e.g. if, after some preparation steps, they consist of a loop in which 

some alternatives with the corresponding instructions are enumerated. The power of the 

developed scripts does not depend so much on the algorithmic structure as on the power 

of the available commands. Or vice versa: if you have enough powerful commands, you 
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can do a lot with simple programs. The parameters then can be adjusted in one of the usual 

ways. If the appropriate tools are available, the preparation of data is a very suitable topic 

for schools. The ML.Sprite-Library is intended as such a tool. 

The instruction sets of the ML.Sprites contain solutions for a number of typical beginner 

problems, e.g. sorting, drawing a graph or displaying an image in false colors. This does not 

mean that there is nothing left to do - you can only tackle more complex problems. So 

instead of sorting a list, you can look for solutions to problems that require sorting, among 

other things. Part of the work will consist of assembling sequences of library functions, 

testing them, and then making them available as a new block that can be used by other 

sprites to perform other tasks. The access to resources of other objects can serve as a 

training ground for object-oriented programming - but it does not have to. Instead, simple 

procedures such as data exchange using global variables can be used. 

 

 

 



3 The Structure of ML.Sprites            10 

 

3 The Structure of ML.Sprites 

The structure of ML.Sprites is based on the idea of documented data sets consisting of 

two parts: the metadata, which describes the structure and context of the data (e.g. num-

ber format, image dimensions, recording device, recording date, ...) and the associated 

pure data segments. Metadata usually consists of dictionaries - names with assigned val-

ues (e.g. "Recording date: 24.12.2018").  Examples for this structure are FITS files [FITS], 

which are standard in astrophysics but are also used in the Vatican Library, or JPEG images 

from mobile phones. Also, here there are meta data (image size, compression degree, date 

of acquisition, often also GPS coordinates). Without these an image generation would not 

be possible. It is important that the image generation does not change the original data. 

We adapt this structure by giving an ML.Sprite three local variables, each containing the 

data (myData), the data description (myProperties) and a collection basin for (error) mes-

sages of called blocks of the sprite (myMessages). These variables can be filled by import-

ing data from different sources (SQL queries, text file, CVS file, JSON file, FITS file, direct 

assignment, ...), whereby the properties myProperties have to be adapted to the respec-

tive data. On the other hand, this can also be done "by hand". With the help of these prop-

erties, data can be converted into graphical representations (graph, data plot, histogram, 

image, ...), whereby either myData or another suitable table is selected as the source.  

It is important that the image generation does not change the original data. If, for example, 

an image of Jupiter is used to determine the distances between its moons, then these must 

at least be visible in the image. Therefore, after adjusting some parameters, e.g. a false 

color image can be generated. In this image Jupiter itself will appear rather unstructured. 

If you want to examine the "eye" of the planet in more detail, the parameters must be 

selected completely differently, so that the moons are hardly visible. All these changes 

must be done in the pixels of the current Snap! sprite costume without affecting the image 

data itself. 

Because tables can be displayed very nicely in Snap!, this display format is not additionally 

implemented. Therefore, the data type table is implemented with many of the operations 

commonly used in data science (table operations, correlation calculation, affine transfor-

mations, solving linear systems of equations, ...), which can handle larger amounts of data 

sufficiently quickly. 

Since the library (currently) contains 118 new blocks, these have 

been grouped according to their functionality and distributed into a 

total of six sprites that can serve as prototypes for various tasks: a 

DataSprite for handling the actual data, an ImageSprite for image 

processing, a PlotSprite for graphical representations, a Neural-

NetSprite for Perceptron nets, a SQLSprite for database queries 

and a MathSprite for linear algebra operations. In order to use 

them independently, some blocks were created in slightly different 

variants. A "pool" called Arthur&Ina contains these prototypes as 

parts. If you want to use them individually, they can be solved by 

Arthur&Ina and stored individually. 
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The overall structure is as follows:   

 

 

 

 

 

 

 

 

 

 

Most blocks get their parameters (image size, value ranges, colors, ...) from the dictionary 

myProperties. The properties preset with set properties make it possible to use blocks for 

creating graphics, diagrams, ... without too many parameters. If the values do not match, 

the properties are changed either individually (with set property) or in groups (e.g. with 

set line attributes). 

The blocks of each sprite have a different symbol on the front to quickly distinguish them 

from each other and from the standard Snap! blocks. As soon as you can create your own 

new palettes in Snap!, the library blocks should be placed there. If this would already be 

done in an own Snap! variant, then you would either must adapt it continuously or decou-

ple from the Snap! development. Both would be more unpleasant than the solution chosen 

now. 

 

 

ML.Sprite

 

imports data from 

… 

• image files 

• text files 

• SQL-queries 

• JSON files 

• CSV files 

• … 

ML.Sprite-Blöcke 

 

 

provides blocks for 

the graphical repre-

sentation of data, 

for editing tables, 

solving equation 

systems, statistical 

operations, ... 

 



4 Working with ML.Sprite-Prototypes            12 

 

 

4 Working with ML.Sprite-Prototypes 

4.1 Versions of ML.Sprites 

As experienced data scientists, Arthur&Ina have the full range of methods at their disposal. 

The corresponding prototypes buzz around their heads, and if you double click on them, 

you will reach the corresponding sprite.  As we are professionally differently oriented than 

they are, we will hardly ever need all versions of the ML.Sprites at the same time - but 

which one we need depends on the chosen problem. Therefore, we can also solve all or 

single sprites of Arthur&Ina (right click on the sprite and select "detach") and save them 

individually ("export"). If we are lucky, someone has already done this, and we only import 

the needed prototypes (either with "import..." from the file menu or by "pulling" the file 

into the Snap! window). This is much faster than loading everything at once. After that we 

should set the stage to a suitable size (depending on the screen resolution) with "Stage 

size..." in the tool menu of Snap!, e.g. 800x600 pixels. 

In each of the loaded sprites we find a small example that shows how they can be used. 

The new blocks are distributed on the usual palettes, mostly on Looks, Operators or Varia-

bles. They are located down there and have a common symbol to distinguish them from 

the standard blocks. 

If we want, we can... 

• ... work directly in the prototype, i.e. use the new blocks without 

further formalities.  

Example: The current costume, which was inserted from outside, 

for example, is read into the myData area and the corresponding 

properties are set. It is then printed in false-color and logarithmic 

representation, using the maximum value just determined dur-

ing import. 

• ... right click on the sprite to create a copy or a permanent clone 

of the prototype and work with it in the same way.   

• … create new temporary clones from the Control palette with the 

new clone of ... block and use them in the following. 

Example: First a temporary clone of the ImageSprite is created. 

This is asked to first read astronomical FITS data, whereby the 

file to be read is chosen by the user. Then the image is displayed 

as shown in the other example. 
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4.2 Access to ML.Sprites 

If you don't find the functionality you are looking for in the current ML.Sprite, the question 

arises how to access the data and/or methods of another ML.Sprite "from outside". Since 

these variables are all local, you cannot see them directly "from outside". On the one hand, 

this has the advantage of keeping the number of currently visible data and methods clear, 

but on the other hand it makes access more difficult. We will go through the different ac-

cess options in sequence. We have to distinguish clearly between local and global data and 

methods. As an example, we choose the situation where a "normal" Snap! sprite wants to 

use the possibilities of two Arthur&Ina sprites, a PlotSprite and a DataSprite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Access to the data of another sprite 

Example: The Snap! sprite needs the data of the DataSprite. 

Solution 1: In the DataSprite you assign the value of the data (myData) to a 

global variable (data). This can be accessed directly everywhere, even 

in the Snap! sprite. (But this is not very elegant!) 

Solution 2: You can access directly the data of the DataSprite by using the of-

Block. First select the desired sprite in the right input field, here: the 

DataSprite. Afterwards, by clicking on the left input field the local 

variables (here: myData, ...) and the local methods (here: set prop-

erty, ...) are listed next to some standard attributes like position, size, 

... (see next page). From these you can select the desired one.  

 

Snap!-Sprite 

local variables, e.g. 

test 

local blocks, e.g. 

commandA 

reporterB 

 

PlotSprite 

local variables, e.g. 

myData 

local blocks, e.g. 

set properties 

copy of costume <…> 

 

DataSprite 

local variables, e.g. 

myData 

local blocks, e.g. 

set properties 

copy of <data> 

 

global data and blocks 

global variables, e.g. 

newSprite, data 

global blocks, e.g. 

move <n> steps 

x position 
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In our case it is the variable myData.  

 

You can work with this as usual, e.g. by assigning the first 

element to another variable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: The Snap! sprite needs the data of a clone of a DataSprite. 

Solution: You bind the clone to a local or global variable. With this variable you can ac-

cess the clone later.  

 

 In the following, we proceed as in the previous example, because only the 

properties of "named" sprites can be listed. Finally, replace the name of the 

selected sprite (here: DataSprite) with the variable that points to the clone. 
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For methods we choose the following convention: global methods as well as methods of 

other sprites without parameters are called by tell and ask blocks, methods of other sprites 

with parameters are called by run and call blocks. (But sometimes we do it differently.      ) 

1. Execution of a global method (command) by another sprite  

Example: The Snap! sprite tells the PlotSprite to move a little. 

Solution: The Snap! sprite asks the PlotSprite to move by dragging the global block or 

blocks into the script area of a tell block. On the left side of the tell block the 

addressed sprite (here: the PlotSprite) is selected. The blocks are executed in 

the context of the other sprite, e.g. with its current position and direction.  

 

 

 

 If the addressed sprite is a clone, proceed as above: replace the name of the plot 

sprite with the variable.  

 

 

 

2. Execution of a global method (command) with parameters by another sprite 

Example: The Snap! sprite tells the PlotSprite to move differently. 

Solution: The tell block is expanded to the right by as many fields (small right arrow) as 

there are open parameters. The corresponding input fields for the methods must 

be completely empty! 

 

 

 Note: There are other ways to do this and, above all, much more differentiated. 

Please read the Snap! manual. 

3. Call of a global method (reporter) by another sprite 

Example: The Snap! sprite asks for the properties of the PlotSprite. 

Solution: The ask block is used instead of the tell block. Otherwise as described above. 
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4. Calling a local method by another sprite 

Example: The Snap! sprite changes the size and color of the PlotSprite. 

Solution: The run block is used with a local method that is selected using the of block. 

 

 

Example: An ImageSprite is asked to determine the total brightness around the speci-

fied point (100|50) in a radius of 5 pixels. 

Solution: 

 

Example: A MathSprite is asked to provide a 4x3 matrix with random numbers. 

 Solution:   

 

5. Calling the code of a local method by another sprite 

Example: The PlotSprite wants to execute the method of the ImageSprite to draw a 

circle on its own costume. 

Solution: If local methods do not depend on local variables and/or other local methods, 

you can export the code and execute it in another context. This is typically the 

case with JavaScript functions. The drawing operations of the ImageSprite, 

which are sometimes also needed by other prototypes, serve as examples 

here. Since we cannot store global methods for the chosen way of binding func-

tionality to sprites, the drawing methods of the ImageSprite are available in a 

second version, which has been marked as "exportable". Since the properties 

of the ImageSprite can no longer be accessed here, the number of required 

parameters "explodes". But for this you can export the code.       

 In PlotSprite the code of the drawing function 

is accessible via the of-Block. 

 This code is executed in 

the context of the Plot-

Sprite, whereby the re-

quired parameters 

must all be listed. Af-

terwards the changed 

costume is displayed 

again. 
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If you have to combine several such calls, it becomes a bit cumbersome. It is therefore 

recommended to write a local method within the addressed sprite that triggers the re-

quired actions. This method is then called from outside. 

Example:  The specifications for a diagram are set in PlotSprite. In another sprite you can 

simply call this method.  
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4.3 Importing and exporting data 

Snap! can import a range of data formats directly. This can be done by "dropping" the cor-

responding files on the Snap! window or by right-clicking on a variable watcher2. Both 

works well with text, CSV and JSON files. Other text file formats such as FITS can also be 

imported in this way, where you are asked if you are serious. Exporting works the same 

way. If you want to do the same programmatically, use the reporter block read file with 

filepicker. A file manager window appears, where you select the file as usual. Afterwards 

the data will be imported. 

The main task is then to assign this data to 

the myData variable and set the corre-

sponding properties in myProperties. This 

is done by the following block, which im-

ports data from outside into the myData 

area. This can be image data, table data or the data of the current costume. The costume 

is stored as a table of RGB values.  

Example: The ImageSprite saves an image (source: [NASA]) and displays it with 

false colors. 

 

Example: Almost 600.000 data records from a CSV file are read in about 10 seconds. The 

properties are set. 

 

 

Example: SQL-import 

If we have access to an SQL server, we can also read in 

data from there. In our case we use an SQLSprite to 

import the results of a query into the variable myData. 

The data is converted into a table and its relevant prop-

erties such as number of columns and rows, ... are reset. 

 

 

  

 
2 You get a variable-watcher, if you set a checkmark in the box beside the variable. 
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Example: JSON-import 

Again, the easiest way is to simply "drop" a JSON file into the Snap! window. But it also 

works automatically. First of all, we look for interesting JSON data and of course choose 

the statistics of baby names in New York City - what else. The appropriate block for this is 

again import <table data> from <read file with filepicker> to myData. The result is a list 

with two columns and two rows, the metadata and the actual data. Because we are inter-

ested in these, we replace the original data with the element (2|2) of the table. Of course, 

we looked at the individual elements in table form beforehand to check what we loaded. 

Of the many columns, we copy the three interesting ones into a new table, add column 

headings and import the result back into myData. 

The result: 19419 baby names 

Who would have thought it! 

Example: Importing data with the mouse 

In many cases it is advantageous, especially with images, to read in data with the 

mouse. The Sensing palette of the ImageSprite and partly also of the PlotSpite 

offers blocks such as <...> by mouse, with which image values, image coordi-

nates, coordinates in the used coordinate system for graphs and/or data points, 

the data on a section through the image, starting and end point of a line, center 

and radius of a circle and the summed brightness values together with their num-

ber in a circle can be determined. As an example, the height of ancient columns 

is to be measured. Therefore, the costume image of the ImageSprite with the 

columns is imported and then measured with the mouse (yellow line).  

Example:  Measuring distances on an image 
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Example: Measure the total brightness around a pixel in an image (Source: [HOU]) 

 

 

 

 

 

 

 

 

 

The export of data can be done directly from a Variable-Watcher.  

For scripts there are two new blocks write <table> to CSV file <file-

name> and write string <string> to file <filename>. The results will 

end up in the download folder of the browser, as usual in Snap!. The 

two blocks allow you to automate data exchange with spreadsheet 

programs or text files, for example, to save the results of data pro-

cessing. 
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4.4 The DataSprite 

All DataSprites contain a block in the Looks palette that 

creates a costume of the specified size with the RGB val-

ues of the background color and switches to it. They also 

all have the same set of local variables: myData contains 

the actual data, myProperties its metadata, and 

myMessages any messages generated when the blocks 

are executed - usually error messages. If something does 

not work, you should look there.  

The DataSprite is used to manipulate table data. The 

properties are adapted accordingly: they describe the 

current state of the stored table.  

The block import <data> from <source> to myData, which 

is often used together with read file with filepicker, is 

used to read data. Existing data in table form can be written to CSV files with 

write <table> to CSV file <filename> for further processing. If they are available 

as a character string, they can be saved as a text file with write string <string> 

to file <filename>. 

In the Operators palette we find three more blocks: ran-

dom provides random numbers from the usual range be-

tween 0 and 1 with full accuracy, regression line parame-

ters of <source> calculates the parameters of a regression 

line through the given data set. The predicate is <source> 

a <type> tests the input for whether it is a table, a vector or a matrix, the latter being 

allowed to contain only numerical values. The block is mainly used to intercept errors.  

The main functions of the DataSprite can be found in the 

Variables palette. There are two blocks for generating test 

data: <n> random points with ranges <xmin><xmax> and 

<ymin><ymax> generates random points from the given 

range that spread around a straight line, <n> random 

points near <term> between <xmin> and <xmax> corre-

sponding to points distributed around the given function 

graph. The block new <n> X <m> table creates a new 

empty table of the specified size and copy of <source> re-

turns a copy of the passed data. This is sometimes necessary to prevent the operations on 

the data from altering the original data itself.  
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The next group of blocks refers to the elements of the 

specified table: delete <row/column> <n> of <table> de-

letes a column or row of the specified table, add <row/col-

umn> <data> to <table> appends the passed data as a new 

row or column to the table. With <row/column> <n> of 

<source> you can copy individual rows or columns of a ta-

ble. The last two blocks allow access to individual table el-

ements. 

select rows of <table> where column <n> is <predicate> 

<value> allows to select table rows with certain properties. 

 

 

The block <property> of <data> determines the minimum or 

maximum of a vector and their positions, the number of elements or their 

sum, the mean value or median as well as the variance or standard deviation. 

 

 

 

Relationships between two columns of a table can be de-

termined with <property> of column <n> and <m> of <ta-

ble>. ranges determines the value ranges that are 

needed for graphical representations, for example, the 

covariance and the correlation coefficient are used for 

statistical investigations. The next block groups the data 

of a column and calculates the specified values of the re-

spective groups. 

The block normalize <data> by <option> is intended for 

graphical representations and the comparison of data. 

Also, for neural networks it is sometimes needed with the 

option softmax.  
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The last four blocks are mainly needed for examples from 

the field of machine learning. The reporter block <k> next 

neighbors of <point> in <data> determines the k nearest 

neighbors of a point in a point set. It can be used, for ex-

ample, for clustering problems. sort <data> by column 

<n> <ascending/descending> allows you to sort a table by 

a column to be specified. The pooling block reduces the amount of data with a step size to 

be specified, e.g. for convolutional neural networks, and the actual convolution can be 

performed for images or neural networks with apply convolution kernel <kernel> to <ta-

ble/image>. Examples of this are given in the next section. 

Example: Income data from the US Census income dataset (Source: [Census]) 

We want to dig a little bit in data and therefore download 

the Census Income Dataset3 from the net.  The corresponding CSV file can be loaded from 

the storage directory into myData and displayed immediately. It contains 32562 datasets. 

A right click on it and selecting "open in dialog..." shows all columns. 

What connections could now become apparent in? 

Our DataSprite blocks do not help much at first, because they mostly process numerical 

data. If we want to use them, we have to scale the columns so that numerical contents 

result. In the simplest case, we just replace texts with numerical values - and we should 

think carefully about the consequences this might have in terms of interpretation.  

Let's start with the last column: The income values are 

given for only two ranges: less than or greater than 

$50000. We assign the values 1 and 2 to these ranges. (Or 

0 and 1, or -1 and +1, or 0 and 100, or ... Would these 

changes have consequences)? In order not to change the 

original values, we create a variable income and store the 

changed values there by copying column 15 into this vari-

able, deleting the first value (the heading) and then using 

the map...over... block to change the contents. At least 

that's what we're trying to do. Since there are quite a lot 

of values, we right-click on the map block and choose just-

in-time compilation with "compile...". A small lightning symbol appears in front of map. 

Unfortunately we only get the unchanged column 13 when we look at the result as a table 

again.  

What's up? We look at the first element of income and 

check if it is a string. That is the case, but it is longer than 

we thought: 

 
3 This is one of the training data sets for machine learning. 
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So, we have to throw out the leading spaces first. That 

works: our variable income only contains the values 1 and 

2, as we can quickly check by looking at it. 

What does this income now depend on?  

Maybe from age? We combine column 1 (age) and our 

modified income column into a new table called testdata. 

   

The correlation between age and income is described by the 

correlation coefficient. The calculation is simple: 

 

And what does that mean? 

 

 

  

 

Tasks: 

1. Find out about the meaning of the correlation coefficient and the interpretation of the 

value obtained. What does the value "0.2340..." mean? 

2. Does the correlation coefficient in this case depend on the type of numerical scaling of 

the data (1 and 2, -1 and 1, ...)? Check that. 

3. Determine other correlation coefficients, e.g. between education and income, country 

of origin and income, marital status and income, country of origin and occupation, ... 

4. Find out if and when scaling of non-numerical data can have an influence on the result.  
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Example: New York Citibike Tripdata (Source: [NYcitibike]) 

Let's go see who actually rides a bike in New York. To do this, we download the NYCitibike 

rental data of one month onto our computer, that is the already mentioned almost 600000 

data records. We take a closer look at them.  

Of course, we still have to find out from the source what the data actually means - i.e. look 

at the metadata. For gender we learn that 0: unknown, 1: male and 2: female. For the 

columns "tripduration" and "gender" we get some data: 

The average loan period, based on gender: 

We figured as much! 

For further calculations we delete the header line of the 

table … 

… and see if they're any lazier on Broadway:  

 

 I see. It's probably worse in Central Park! 

 

All right. All the prejudices don't have to be true.       

Tasks: 

1. Maybe only women in Central Park ride bikes more. Check it out. 

2. It's not like there's only one bike rental place in Central Park. Find out the appropriate 

mean values for the entire area. 

3. Is there actually borrowing information for other parts of the city? Search and compare 

the results with Manhattan. 

4. Determine the average borrowing times per weekday, overall and for individual sta-

tions. Are there any differences? What are the differences? 

5. Above, the average borrowing duration was calculated based on gender. It could be 

done the other way around. Would that be complete nonsense or are there any ques-

tions where this would make sense?  
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4.5 The PlotSprite 

The PlotSprite is used to create and display diagrams. 

Therefore, it is mostly used together with a DataSprite. 

In addition to the three blocks for managing its properties 

in the Variables palette, which primarily contain presets 

for generating the diagrams, there is only one new block 

<costume-/graph-coordinates> by mouse in the Sensing 

palette for the "remeasurement" of values with the mouse 

and two new blocks in the Operators palette convert 

<value> to <...> for the conversion of screen to graph co-

ordinates and vice versa as well as the already known 

predicate block for type checking is <data> a <vector/ma-

trix/table>?.  

The actual new tools can be found at the bottom of the Looks palette. On the one hand, 

you can use them to change the preset properties and thus adapt them to the current 

problem, e.g. the diagram labels or the value ranges. On the other hand, you can create 

different types of diagrams.  

 

set labels ... set the values for the diagram title and the 

labels of the axes. Since the distances of the diagram axes 

from the edges depend on them, these values are also de-

termined by set offsets from edges.  While we're at it, we 

can also reset the value ranges with set ranges ... and the 

display of the numbers on the axes with set scale attrib-

utes .... set pretty ranges automatically sets the number 

ranges with "pretty" limits. add axes and scales then 

draws the frame of the new diagram.  

Since we often need several diagrams, we first create a 

clone of the PlotSprite and pass the necessary data to it. 

This clone will display the tastefully designed new diagram 

on its costume. 
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Three of the blocks in the Looks palette are for programming conven-

ience: properties of group <groupname> combines several properties 

and thus facilitates the data transfer to JavaScript functions. ranges of 

<data> determines the value ranges of a two-dimensional table and 

copy of costume <costume> is needed if you want to switch quickly be-

tween two versions of a costume. 

The diagrams themselves are generated with the remain-

ing new blocks. The properties of line diagrams are set 

with the block set line attributes ... Function graphs are 

drawn with these attributes using the add graph ... block, 

for example. The function term can be passed either as a 

list of the coefficients of a polynomial or as a "ringified" 

Snap! term.  

Example: Drawing a function and its derivatives in different colors and line styles. 

 

 

 

Tasks: 

1. Plot different types of functions (trigonometric functions, logarithms, polynomials, ...) 

as a graph on a PlotSprite. 

2. Extend the function graphs with their derivatives. 

3. Choose different value ranges, accuracies of number representation, text sizes and la-

bels for the representations. 
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If we want to display the contents of a data table graph-

ically, this can be done with the block add dataplot with 

numeric scales ... Scales and labels are again added with 

the block add axes and scales. The way of displaying the 

data points can be adjusted very precisely with the block 

set datapoint attributes .... The lines in between keep the 

line attributes. 

Example: Representation of a point set 

We ask a DataSprite to provide 100 random points scat-

tered around a straight line with the slope m=0.5 and the 

intercept b=0. The obtained points are displayed in a dia-

gram. 

 

 

 

 

 

 

Example: Additionally the regression line is now drawn. 
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Example: Display of mixed data 

Text data is often combined with numerical data. An ex-

ample would be the turnover data of different represent-

atives in one year in one area. If we want to display them 

graphically, the x-axis, for example, must be labelled with 

text data, while the y-axis is treated as before. To create 

the diagram we use the block add dataplot with text and 

numerical scale. 

 

 

 

 

 

 

 

 

As the last of the new blocks of PlotSprite we consider 

add histogram of <data> with <n> groups. Histograms 

can be generated and displayed directly from data sources. 

Example: An RGB image is loaded, decomposed into gray-

scale, and the normalized distribution of image values is 

displayed as a histogram on a new PlotSprite. We find the 

actual image as a costume of an additional sprite called 

"thePicture". 

First of all we load the image into the data area of a 

DataSprite: 

We get 172800 RBG values. 
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We convert 

these into grey 

values. We use 

the compiled 

version of the 

map block. 

 

Then we switch to the PlotSprite and copy the loaded 

data of the DataSprite. 

Now we can display the data as histogram e.g. on a new 

PlotSprite. 

 

 

 

 

 

 

 

Tasks: 

1. Search for different amounts of data in the network. Display these or parts of them 

graphically. 

2. Automate the creation of histograms with a new block histogram of <costume>. Com-

pare the histograms of typical image types. To what extent is it possible to compare 

images in this way, or where could difficulties arise? 

3. Represent the three colors of an RGB image in the same diagram by graphs and/or 

histograms.  
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4.6 The ImageSprite 

The ImageSprite is used to display and manipulate im-

ages. For this purpose, it contains in the Variables palette, 

in addition to the obligatory blocks for managing the prop-

erties, the possibility to load images and determine the 

minimum and maximum values of the image data.  

In the Looks palette we find the already known block add 

image ..., which allows to display data on the costume as 

gray or false color image. With the help of the block copy 

of costume you can duplicate costumes if necessary. 

In addition to the usual block for creating a 

new costume, available for all ML.Sprites, 

there are two blocks for setting line prop-

erties and fill color. With these and six 

blocks for drawing figure outlines and filled 

figures on the costume, you can easily cre-

ate random graphics, for example. 
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Example: Generation of random graphics 

 

 

 

 

 

 

 

Tasks: 

1. Search the web for pictures of Piet Mondrian. Try to 

create similar random images on the ImageSprite. 

2. Use a "vanishing point" to create images in which ob-

jects appear to move "from back to front". Try it. 
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In the Sensing palette of a ImageSprite there are some 

new blocks for accessing pixel values. The block ... by 

mouse has already been described above for data im-

port. With image value ... at ... and set image value of ... 

individual pixels can be read or changed if they are lo-

cated in the data area myData. RGB at ... and set RGB at 

... allow the same directly on the current costume. The 

block brightness around ... determines the total bright-

ness around the specified point. 

Example: Simulation of a planetary transit in front of the sun 

We look for a nice image of the sun (source here: [Schul-

Astro]) and load it as a costume of an ImageSprite. To 

make it look more like space, we enlarge the stage and 

color it black. If we still draw the planet, we get the image 

on the right.  

The planet should pass in front of the sun as a black circle. 

If we paint such a circle, we change the actual image of the 

sun. From this we make a copy newCostume to draw on it. 

Our planet should move from the far left a little outside 

the image (x=-2r) to the far right (x=image width+2r) on 

the height y. We can also specify the radius r of the planet.  

We can determine the current brightness of this arrange-

ment without too many copying processes by subtracting 

the brightness of the pixels covered by the planet from the 

total brightness determined at the beginning. To do this, 

we initially import the image of the sun into the data area 

myData and determine the brightness around the image 

center in the radius "half image width" as well as the num-

ber of pixels involved. brightness around returns the 

summed gray values as well as its number. From these val-

ues we calculate the average brightness of the "slightly 

darkened" sun and store it together with the current posi-

tion in the variable transit data. We package these opera-

tions in the new block planet transit at <y> with r <r>. 
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We now want to follow the planet transit "live" in a dia-

gram. For this purpose, we load the PlotSprite and write 

a block for this plot to prepare the diagram parameters. 

This block can be called by the ImageSprite.  

We insert the corresponding block at the beginning of our 

transit script and supplement it with two calls at the end 

of each loop to redraw the PlotSprite diagram with the 

new data. 

The result corresponds roughly to one of the methods 

used to find exo planets. 

 

 

 

 

 

In the Operators palette, we find the is ... a ... predicate, 

which is used everywhere, and two somewhat more so-

phisticated blocks. The first allows to perform affine trans-

formations in an image by mapping three points to three 

others - and all other points accordingly. Additionally, the 

dimensions of the image must be specified. 

Example: Let's flip an image vertically along the center 

line. We load the image - here: of a church - and select 

corresponding points on the edges. These points are com-

bined to the two lists source and target.  

After that we import the image into the data area myData 

and execute the affine transformation with the two point- 

lists. We save the result in the variable newData.  
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Finally, we create a clone of the ImageSprite and ask it to 

display the transformed image as a costume. 

 

 

 

 

 

 

 

As last new block we find the apply convolution kernel ... 

to myData – block to perform convolutions on images.  

Example: Edge detection 

We load a picture of an ancient temple and import its data 

into the data area of myData. We apply the Laplace kernel 

[
1 1 1
1 −4 1
1 1 1

] to it and save the result in the variable new-

Data. 

Next, we create a clone of the ImageSprite, resize it and 

let it show the changed image as its costume. 
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Since there is sometimes a need to execute the graphics 

methods in the context of another sprite (see above), 

these methods are available in an "exportable" version 

that does not rely on local sizes. They are labeled by a left 

arrow         . The usage is described in chapter 4.2.  

 

 

 

 

 

 

Tasks: 

1.   Pictures are sometimes a bit "weak". This is because they do not use the full range 

of values for the three color-channels from 0 to 255.  

 a: Develop a method to determine and display the value ranges of an image. 

 b: Develop a method to use the full range of values, i.e. to map black pixels to 0, bright 

pixels to 255. 

 c: Summarize the method as a new block with the costume of a sprite as input and the 

improved costume as output. 

2. a: You can try to find "faces" on images by highlighting contiguous areas of a color 

range, e.g. "orange", and deleting the rest of the image. Try to develop a new block 

for this. 

 b: You can use a kernel to isolate the edges of such areas. Find out about suitable ker-

nels on the net and test them for the purpose mentioned. 

 c: Faces are often "oval". Try to distinguish faces from other "orange" objects in this 

way. 

3. a: Really artistic photos are black and white of course. If you don't have any, you can 

create grayscale images from RGB images. Do that. 

 b: It's even more artistic if the photos are "hard", i.e. have a very strong contrast. Ex-

periment a little!   
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4.7 The MathSprite 

The MathSprite can create clones and a new costume and manage its - few - properties, 

but otherwise it only has new blocks in the Operators palette. It is intended for services for 

the other sprite types. Essentially, it adds linear algebra capabilities to the operators of 

Snap!. 

Three of the blocks are quickly explained: random returns a random number of the usual 

type, i.e. between 0 and 1 with full accuracy. round rounds numbers with a fractional part 

after the decimal point to the number of digits specified. The predicate is 

<data> a <vector/matrix/table> is mostly used in scripts to catch errors and 

has been used in this script many times. 

The next two blocks should also be self-explanatory. new 

random vector generates a new vector from random num-

bers, which is sometimes needed for testing purposes. 

new random matrix does the same for matrices. 

 

 

The MathSprite works with numbers, vectors and matri-

ces. Since vectors and matrices are sometimes needed in 

transposed form, we also find a block transpose. This 

block can handle both data types. 

 

 

 

 

 

 

More interesting are the next blocks.  

The somewhat inconspicuous reporter block <a> operator <b> can perform the specified 

operation with numbers, vectors and matrices - if they are allowed. So it works between 

numbers, numbers and vectors, vectors and matrices, matrices and matrices, ... 
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Polynomials are processed by MathSprite as lists of their 

coefficients. The coefficient of the highest power is on the 

left. 𝑥2 − 2𝑥 + 1 is written as                                .   The value 

for a given argument is calculated by the block <polyno-

mial> polynomial (<argument>). 

solve <matrix> * x = <vector> solves linear systems of 

equations - if there is a solution. 

If a list of points is given, the block polynomial interpo-

lated for <points> calculates a polynomial whose graph 

runs through these points. 

Applications of these blocks follow. 

 

Example: Curve through n points 

We need three sprites: a DataSprite to generate the random points, a MathSprite to cal-

culate the interpolation polynomial and a PlotSprite to plot the results. Everything will be 

controlled by a fourth sprite called Control. The points for the interpolation are to be se-

lected by mouse. 

Generation of the random data: In the DataSprite we 

write a function to generate the points. We call this func-

tion from Control.  

  

 

Random data display: We write a method in PlotSprite to 

display the data. We pass the data to this method from 

Control. 
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Interpolation data collection with the mouse: We add an 

event handling method to PlotSprite that reacts to mouse 

clicks. With <costume-coordinates> by mouse we get the 

costume coordinates and store them in the variable new-

Point. To see the points, we import the "exportable" draw 

circle method of the ImageSprite. Since it requires quite 

a lot of parameters and we only want to draw small red 

circles, we use a helper method circle at <x><y>, which 

only needs the current coordinates - the rest is already 

filled in. Next, we save the costume coordinates converted 

to graph coordinates in the list points. If we’ve clicked 

three times, we let the MathSprite calculate a polynomial 

through these points. We draw this polynomial a little bit 

thicker in red. 

 

In Control we prepare every-

thing in advance for the data 

acquisition. 

 

 

 

Tasks: 

1. a: Create "point clouds" which scatter around other fully rational function graphs. 

 b: As in the example, define some points in these clouds through which an interpola-

tion polynomial is to be drawn. 

 c: Have these polynomials drawn. 

2. a: Experiment with the number of selected points. Will the results be better if you se-

lect more points? 

 b: Create "point clouds" which scatter around non-rational function graphs (trigono-

metric, ...). Can you also describe them by interpolation polynomials? 

 c: Formulate a rule, when and how interpolation polynomials can be used meaning-

fully - and why just like that. 
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4.8 The SQLSprite 

Similar to the MathSprite, the SQLSprite is intended as a service provider for 

projects. It encapsulates the functionality for database access and should there-

fore only be loaded when needed. 

The few properties of the SQLSprite essentially contain the connection data to a 

sample database server and the current state of the connection (database used, 

current table, ...). It is possible to create clones of SQLSprite, but there will be 

few projects where this is necessary. Also new costumes are rarely needed. Most 

of the time the SQLSprite will just "lie around somewhere" and show by the color 

of its costume if the connection to the server is established. 

Outside the Variables palette, there is only one operator 

block to determine the part of a string - this is needed from 

time to time to evaluate the query results. Since no local 

data is required, the block is marked as "exportable" by 

the left arrow. It can therefore be executed by all sprites 

regardless of context. If this happens often, you should 

write a global method substring to make the call easier. 

 

 

In the Variables palette you will find the actual SQL blocks. 

If you want to establish a connection, you can either use 

the default server or set a new connection with set prop-

erty<connection> and the connection data. Then the block 

connect should establish the connection. If this works, the 

SQLSprite changes to the green costume. The available da-

tabases are listed with read databases. One of them can 

be selected with choose database. 

 

 

 

 

 

 

 

The handling of tables is correspondingly. A specific one 

can also be selected and displayed. 
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In practice, the details of the tables in the database used 

are always needed. If you assign the table attributes to a 

variable one after the other and let it be displayed with "open in dialog", you can place the 

corresponding table data in the Snap! window and start the queries. 

  

SQL queries are composed as SELECT statements. There are two blocks for this: 

one for simple statements, one for (almost) complete statements.  

The standard predicates and functions of SQL are used to compose the queries. 

Example: a simple SQL query 

 

Example: a more complex SQL query 
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The two SELECT blocks generate the text of an SQL query, 

but do not execute it. The reason is simple: you should be 

able to view the query. If you are satisfied with it, it is ex-

ecuted with exec SQL-command. In this block you can also 

enter other SQL commands, if you have the appropriate 

rights on the server. With the help of import SQL-data ... 

these are converted into tables and moved into the data 

area of the SQLSprite.  

More complex instructions can be assembled and tested from these blocks. If the re-

sult meets the expectations, the query can be encapsulated in one block, which only 

contains the relevant parameters and can be used by other sprites without detailed 

knowledge of SQL. 

Example: The course titles and grades for all courses of a learner, sorted by grade in 

descending order, are searched. 

 

 

 

 

 

 

 

 

Example: For statistical purposes, the schueler table should be searcha-

ble according to different criteria. 

 

 

 

 

Example: The 10 courses with the "best" results should be sorted in de-

scending order. 
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4.9 The NeuralNetSprite 

"Deep" neural networks are shaping the discussion on current "artificial intelligence". 

These are usually "fully connected" networks consisting of several perceptron layers. "Fully 

connected" means that all neurons of one layer are connected to all of the next layer. Each 

connection is assigned a weight, from which its influence on the connected perceptron is 

derived - but you'd better read this elsewhere. 

Let's have a look at a net of three layers that receives the pixels of a current 20 M-pixel-

photo as input, thus 2x107 pixels. The input layer consists of 3x2x107 MB numerical values 

between 0 and 255 (if we leave out the transparency byte). To the next layer, there are 

then (6x107)2=3.6x1015 connections - and then twice more. In total, 3x3.6x1015, i.e. about 

1016 weights, would have to be determined - a completely utopian task for "normal" com-

puters. So, we will have to restrict ourselves to somewhat smaller neural networks. 

One way to train perceptron networks is to present them input vectors and the desired 

output right away. The net then calculates the output, which is the result of the existing, 

initially randomly selected weights, and determines the difference from the given result. 

Starting from the last result layer, it corrects the weights "going backwards" so that its 

output "somewhat better" matches the given result. The procedure is called backpropa-

gation. You should also inform yourself about this elsewhere. The trained net results from 

many such corrections. So, "learning" means to adapt the parameters (the weights) by 

means of many examples. With the help of these parameters, the net determines an out-

put vector from the input vector: it calculates a function value. 

Our NeuralNetSprite can simulate and train such perceptron networks. Clones of the net 

can be created for this purpose - just like with the other ML.Sprites. For a NeuralNet-

Sprite you can create costumes as usual and display the current state of the net on them. 

We have already described the new blocks in the Control 

and Looks palette. 

Our weights together form a tensor with m layers consist-

ing of nxn matrices. NeuralNetsSprites should therefore 

master linear algebra. To avoid having to ask the Math-

Sprite every time, the NeuralNetSprite knows the most 

important operations itself. They can be found in the Operators palette. The only 

new feature is the Softmax function, which can be used to scale input vectors, for 

example. You should also inform yourself about this. 
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The actual NeuralNet blocks are 

therefore found in the Variables 

palette. On the one hand, the few 

properties of the sprite are man-

aged there, on the other hand, the 

weight tensor can be loaded as usual and saved again as a CSV file. 

 

 

 

The dimensioning and initial assignment of the network is 

done in the block add new weights. With these blocks we 

can create and display a new neural net of any size. In this 

case, it has the width 5 and the depth 2. The result of the 

calculations with the input vector to be specified is dis-

played.  

As the display of the many numbers would be rather con-

fusing and also hardly informative, the connecting lines 

(the edges) are color-coded according to the values of the 

corresponding weights: from full green for large positive 

values to black for small amounts to red negative weights. 

As at the beginning only positive numbers are generated 

by random generator, new net is predominantly green. 

The nodes of the net are color-coded like the edges. Below 

are the elements of the input vector as small rectangles. 

The inner layers form colored circles and the last layer is 

displayed as output layer again rectangular. The direction 

of the calculation from bottom to top is shown by the ar-

row on the far right. But since sprites can be easily rotated, 

the direction can be displayed differently.  

Often you need the results of the last or even an inner 

layer of the network. These can be calculated using the 

output of... block for a given input. Since the color coding 

does not necessarily show the largest or smallest element 

clearly, it can be determined using the of ... block. 
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Now we have to train the net. In block teach NN ... this is 

done by backpropagation with a learning factor to be 

specified. At the beginning this factor may be a little bit 

bigger, but then it can be reduced. 

Example: A neural network should learn to calculate the output vector <0,1,0,0,0> from 

the input vector <1,2,3,4,5>. If it did this successfully, the second output rectangle should 

appear light green, the rest darker. 

So we create a new neural net as shown above and repeat-

edly apply the teach block. The state of the net is shown 

after each 20 repetitions. 

 

 

 

 

And after about 200 

more passes the pattern 

has clearly formed. The 

net maps the input vec-

tor to <0.1.0.0.0> relia-

bly. You can see quite 

clearly that the first 

layer configures the in-

ner layer in such a way 

that it can in turn 

strengthen (green) or in-

hibit (red) the output 

neurons with the cor-

rect weighting. 

Of course, the net should not only recognize one pattern correctly. In 

training, it is given various other input vectors in random order with 

the desired outputs, with the weights being slightly modified so that 

the strongest output neuron has the correct place. Even such a small 

network has enough parameters for this. Examples of applications are 

given in the next section. 
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Example: Traffic sign recognition 

We want to train a neural network (NN) to recognize 12 

different traffic signs. For this purpose, we search for im-

ages of these traffic signs in the internet and reduce them 

to the format 100 x 100 pixels. You can display them on 

the screen, but the 10000 pixels are of course much too 

much for an NN. 

To bring the amount of data within tolerable limits, we 

reduce the pixels to a 2x2 format by mean-pooling, i.e. 

we form the mean values of the color pixels in the four 

quadrants of the image. From the 30000 values of the 

traffic sign image we derive 12. 

Since only the DataSprite can handle the pooling opera-

tion, we import it along with the NeuralNetSprite to the 

project with the TrafficSignSprite. As a fourth sprite we 

add a ControlSprite that should control everything. 

For the start we give the NN-Sprite a new costume. Since 

we need to specify several parameters for size and color, 

we use the run block. Then we create the weights for a 

new (here: 12x2) net in NN. This net is drawn with a (still 

senseless) input. Next we send the NN to a well-chosen 

place in the upper middle and do the same with the traffic 

sign down there. Finally, we set some variables to 0. We 

need them later. 

 

 

 

 

 

 

We only need the DataSprite for calculation. To use the 

pooling operation, the sprite must import the image data. 

Then it can convert it and return the result. We summa-

rize everything in a new block pooling of <costume>, 

which we call from Control. 
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The color values of the reduced image are combined into 

an input vector using the new block of Control. The first 

two values of the pooling result specify the new image di-

mensions and are deleted. The vector from get input data 

thus contains the desired 12 values. These are modeled 

using the NeuralNetSprite's Softmax function to elimi-

nate unfavorable input values. 

 

 

 

Accordingly, the training vector in get training data can 

be determined with the output values of the NN you are 

looking for. In our case all values should be 0 except the 

one corresponding to the costume number of the traffic 

sign. 

 

 

 

The NN gets two new methods learn from... and test 

with... During learning, the position of the place with the 

highest output value of the NN is determined and com-

pared with the current costume number of the traffic sign. 

If these values do not match, learning continues. 

 

 

For testing, the same operation is performed only once. 

 

Now we have everything together to make Control work 

properly.  

A teaching process consists of determining a random cos-

tume number with the corresponding costume change. 

Afterwards the learning process of the NN is started with 

new input and target data. The passes are counted. 
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The procedure for testing is similar: The costume is 

changed, and it is checked whether NN calculates the cor-

rect costume number. If this is the case, everyone is 

happy. Next, the percentage of correct attempts is deter-

mined. 

Several learning and test runs can be easily triggered. 

 

After about 50 training runs with a higher learning rate and another 50 with a low one for 

fine tuning, we reach detection rates of 100%. 

Tasks: 

1. Train a single-layer net with different learning rates and numbers of learning passes. 

Determine the recognition rate in percentage terms.  

2. Plot the results from 1. graphically using a PlotSprite. 

3. Experiment with multi-layer NNs. Will the results be better? 

4. Increase the length of the input vector by changing the pooling. Do the results get bet-

ter? 

5. Increase the number of recognizable labels by allowing more than one 1 in the output. 

 



5 Applications with ML.Sprites            49 

 

 

5 Applications with ML.Sprites 

5.1 Under- and Overfitting 

Machine learning uses training data to adjust the parameters of a function so that other 

values are predicted well - if everything works out. So, you build a forecasting instrument, 

a kind of "telescope" for data. 

One might think that the more customizable parameters a function contains, the better 

such a function is. But this is not so. On the one hand, (1.) more parameters also require 

more training data and training runs, i.e. more learning time; on the other hand, (2.) an 

"inappropriate" number of parameters can also prevent "good" solutions. For both we now 

give an example. 

1: In the neural network for traffic sign recognition we have achieved very good results 

with one layer. If we increase the number of layers and leave the number of training runs 

the same, the recognition rate will deteriorate drastically. 

2: If the training data are well reproduced by the function, this does not mean that this is 

also true for other data. It depends a lot on the type of function that is generated. As ap-

plication we choose the example polynomial interpolation.  

The task is to use training data to adjust the coefficients of a polynomial so that OTHER 

data are predicted as well as possible. 

To do this, we have to generate data that can be used to calculate an 

interpolation polynomial. The functionalities for this are divided into 

three prototypes: the PlotSprite for plotting the graphs, the Math-

Sprite for the polynomial interpolation and the DataSprite for generat-

ing random data that scatters around a given function. 

So, we create a new project, enlarge the stage to 800x600 pixels and 

load the three prototypes. Then we create a variable random data. 

Now, the arrangement looks like the one on the right.  
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As "workhorse" we choose the PlotSprite. If necessary, 

we import required functionality from other sprites. 

First of all, we ask the DataSprite to generate 20 random 

data scattered around the parabola 0,5 ∗ 𝑥2 − 3. For this 

we write a function <n> new points in the DataSprite. We 

call this function from the PlotSprite. 

This is enough to display the data. We write a block show 

<data>, which makes the necessary settings and does that.  

 

We first try the interpolation with a regression line. The 

DataSprite can calculate the required parameters. 

  

  

 

This looks actually quite nice, but on the sides it doesn't 

really fit. 
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So, we try a polynomial interpolation.  

First of all, we select three random pairs from the training 

data, determine the interpolation polynomial from it and 

draw it. Because we want to experiment further, we gen-

eralize the solution to a polynomial by n points. We hope 

that everything goes well with the selection! The results 

depend on which points were hit (blue). Enclosed a bad 

and a quite good result. 

 

Now we're getting brave! Instead of three points we vote 

for 5. After all, we want to do a good job! That works out 

great in the middle, and then – oops! 

 

 

 

Maybe we just need to take more points. Let's try it with 

10. The polynomials run through more points, but at the 

edges they "run away" - and in between mostly. 
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Well, then with all points!  

You can see that with an increasing degree of the polyno-

mial there is more training data directly on the graph, but 

in between only nonsensical values are "predicted" by the 

wild oscillations of the polynomial.  

The quality of what is learned therefore depends very 

much on how we deal with deviations. We have to decide 

which inaccuracies can be tolerated in detail so that the 

forecast becomes reliable overall. If the degree of the po-

lynomial is too small, we speak of underfitting, if it is too 

high, of overfitting. 

 

Tasks: 

1. Discuss different ways to determine a "good" degree of the interpolation polynomial 

(i.e. its highest power). 

2. Formulate your results so precisely that they can be realized as scripts. 

3. Test the scripts on different data sets. 
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5.2 New York Citibike Tripdata [NYcitibike] 

Even in New York, cycling has become "hip" and borrowing 

data can be loaded as CSV files. We do so and load the al-

most 600,000 data records from June 2013 into a table. 

We split the column headings to get a pure data table. Of 

course, this is done in a DataSprite. Since we also want to 

create graphics, we load the PlotSprite right away.  

What did we actually find there? 

The data legend provides the interpretation for the data: Trip Duration (seconds), Start 
Time and Date, Stop Time and Date, Start Station Name, End Station Name, Station ID, 
Station Lat/Long, Bike ID, User Type (Customer = 24-hour pass or 3-day pass user; Sub-
scriber = Annual Member), Gender (Zero=unknown; 1=male; 2=female), Year of Birth 

Since the geographical longitude and latitude of the rental 

stations are given, it is a good idea to use the Word Map 

Library from Snap!.  We write a small block, which shows 

the surroundings of a rental station as a map.  

Let's see where you can rent bicycles. For the overview we 

extract the rental stations from the complete list, e.g. by 

grouping them according to the name of the starting sta-

tion (column 5) and selecting only this column as the re-

sult.  

We get 337 stations after all. 

Now we collect the data of a station …  

… and build the coordinate list of the stations.  
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With these data we can send the sprite to the individual 

positions, where we leave circles with the stamp-block. 

 

At least in Midtown Manhat-

tan, we don't have to worry 

about finding a rental station! 

Now we want to have a closer look at the rental station 

Broadway - corner 41 Street (No. 55). To do this, we look 

for all records from the list that start or end at this station. 

That's 5005 events that day. Times are entered in this list 

together with the (same) date. We can throw this out 

(split with " ") and reduce it to the hour (split with ":"). We 

then have a numerical scale with the unit "hour". Now we 

can see what's going on at the station during the individual 

hours of the day. And we can graphically display this as 

usual using the PlotSprite. 
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A few streets down the road, it looks similar. 

Is that a general pattern? 

 

 

 

 

 

 

 

Well, at Central Park the people get up later and the tour-

ists are not there yet. But the museums always close at the 

same time. 

 

 

 

 

 

 

 

 

What can our programs learn from these data?  

• We could, for example, predict from the usual departures and arrivals as well as from 

the actual stock whether enough bicycles will be returned in time at a station or 

whether it would be better to transport some of them there. 

• We could determine which rechargeable batteries are needed for eBikes from the av-

erage path lengths. 

• We could determine whether women or men would rather borrow the bikes at a cer-

tain time of day and then make sure that the offer is right. We could do the appropri-

ate thing for the age of the borrower. 

• We could determine the borrowing data per bike and predict when repairs will be due. 

We could also do this, for example, depending on the location of the stands. 

• We could try to generalize distributions from some stations in such a way that fore-

casts for others can be derived from them. So, when the museums close at Central 

Park, the program can "learn" from the old data in which districts the bikes will pre-

sumably be delivered and warn if there are not enough free slots available.  

etc. 
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Tasks: 

1. Break down the activities of the stations according to arrivals and departures. 

2. Write a forecast function that warns if there is a risk of a lack of bikes at a station in the 

next few hours. 

3. For certain stations, display the connections to the most selected delivery stations 

graphically on the map using direct lines. Select the thickness of the lines according to 

the number of borrowing operations and the colors depending on the station. Are clus-

ters formed? 

4. Find out with the help of correlations-block whether there are correlations in rental 

behavior (e.g. with regard to times of day, location, ...) with gender, age, status of bor-

rowers. You may have to replace the data with numeric data beforehand - similar to 

the times. Discuss possible consequences. 

5. For a small section of Midtown (where everything is beautifully right-angled), find the 

coordinates of the street corners. Then develop a router that shows the shortest route 

to the nearest Citibike station. 

6. The rental numbers depending on the time of day show quite a difference in different 

areas of Manhattan. Systematically examine similarities and differences and try to ex-

plain the results. 
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5.3 Star spectra [UniGOE] 

Stars shine in different colors because they have different 

temperatures. In addition, the spectra differ in their ab-

sorption lines. We want to investigate this in more detail. 

We use a PlotSprite and a DataSprite as an assistant, e.g. 

for loading and preparing the data. Inside of this we start 

to work. 

We get some star spectra (source: [UniGOE]) and save 

them as a text file. We read in such a file. In the first line 

we see the star name after the column captions. We iso-

late it and store it in the variable starname. 

We know the star's name now. If you search the Internet 

for it, you will find a wealth of information about it. For 

repeating the loading process with other data, we encap-

sulate it in a separate block. After its execution, the actual 

star data are available as a table. What's unpleasant about 

this is the very different order of magnitude of the data in 

the two columns. We therefore normalize the second col-

umn using the mean value and save the result as normal-

ized data. 

 

 

With this the DataSprite has done its duty for now. We change to the PlotSprite.  
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With the normalized data you can quickly create a chart 

in PlotSprite. 

The sloping course with some prominent absorption lines 

is clearly visible. But is it necessary to have all spectral data 

for this realization? Maybe it is enough to reduce the amount of data by averaging. We 

introduce a compression factor compression rate and complete the script before the dia-

gram is created.  

 

The factor 5 does not change 

much. So, let's keep trying. 

 

 

One can see that the tempera-

ture-dependent course of the 

spectrum is hardly changed. 

Only the absorption lines are 

lost. 
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Thus, the type of spectrum should be describable by an 

interpolation polynomial, e.g. 4th degree. We load the 

MathSprite additionally and try it like this: 

 

 

So, this works great! If we log the polynomial parameters during the test, we can easily 

distinguish the star types by means of the parameter ranges.  

If you feed the polynomial coefficients to a neural network, it quickly learns to roughly 

assign a diagram to a star type. The program can therefore "learn" which parameter inter-

vals belong to which star classes based on the old data. If you enter the data of a new star, 

it determines the coefficients of the polynomial and then makes a well-founded prognosis 

about what kind of star it could be. 
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Tasks: 

1. Set up an interpolation polynomial of the lowest possible degree for the uncompressed 

spectrum data. Which points should be selected for this?  Are there any differences 

between these polynomials and the results of the method shown above? 

2. Develop a script that assigns an unknown spectrum to one of the previously occurring 

types. 

3. Develop a method to examine the most prominent absorption lines more closely. En-

large them for stars of the same class and try to determine differences "automatically". 

Discuss your ideas before realization. 
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5.4 Classification of stars according to the kNN method 

In the Hertzsprung-Russel diagram (see Wikipedia) the lu-

minosity of stars is plotted above their star class. The result 

is a kind of line from top left to bottom right, the "main se-

quence". On this line stars like the sun are mostly located.  

Right above the main row we find the red giants, left below 

the main row the white dwarfs. That’s enough for first. (Pic-

ture source: [HR]) 

We want to classify new stars in this diagram using the k-

next neighbor (kNN) method: As training data we generate 

a list of stars with their coordinates (simply as image coor-

dinates in the diagram) and their type. If we want to classify 

a new star, we determine its position in the diagram and 

look for the nearest k (e.g. k=5) neighbors.  Then we deter-

mine the most frequently appearing star type in this list. 

We assign it to the new star. 

First of all, we need a picture of the Hertzsprung-Russel 

diagram ([HR]). We import it into Snap! as costume of an 

ImageSprite and generate the required data from it.  

We generate the training data by specifying a star type 

and then clicking on some points in the diagram that cor-

respond to this type.  

 

 

 

 

 

Since we want to draw on the image, we work with a copy 

of the HR diagram so as not to alter the original. 

Then we can classify new stars by clicking on them (here) 

and labeling them. 
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We set some properties for the representation ... 

...and draw a circle at the location of the star. 

Then we determine the five nearest neighbors and the 

number of occurrences of their type. In the result we de-

lete the headings and sort the list in descending order. The 

type of the new star is then the first element in the first 

line. We write this next to the star. 

The result: 

 

 

 

 

 

 

 

 

 

 

 

Tasks:  

1. Add the newly classified stars to the sample list so that 

they are included in further classifications. 

2. Draw differently colored dots at the correct places on 

the sprite for the different types of stars instead of la-

beling them. 

3. Run the process for randomly selected points. Is the 

pattern always the same? Do completely different or 

similar patterns emerge? What does it depend on? 
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5.5 Character recognition with a convolutional network 

The immense number of parameters in fully connected perceptron networks and the re-

sulting need for huge amounts of training data has led to other network variants to drasti-

cally reduce this number. One of these is the Convolutional Neural Network (CNNs), where 

the amount of input data for the perceptron network is reduced. This type of network is 

used very successfully in image and speech recognition, for example. 

CNNs reduce the amount of data by first applying several kernels in a multi-stage process, 

which filter out certain properties of e.g. an image (edges, oval surfaces, ...) and thus lead 

to several feature maps, which usually have the same size as the original. This first in-

creases the amount of data. Afterwards, a non-linear activation function (reLU) is usually 

applied to the feature maps, followed by a pooling operation that reduces the amount of 

data again. This is usually called Max-Pooling, where the maximum value is determined 

from a section of the data. If you do this with a "window" that is moved across the feature 

map with a certain stride, each pooling step creates a value of the next, reduced feature 

map. 

 

 

 

 

 

 

As an example, let's take a kernel that filters vertical lines: it colors a point white if there is 

a second pixel next to the point, otherwise black. In the "folded" image we can see vertical 

lines of the original as bright spots. If it is not so important where exactly these lines are, 

we do not lose too much information during the pooling. A white point in a feature map 

after various pooling processes means then: "In this area there was a vertical line some-

where". Using such data from several feature maps, it can be deduced, for example, that 

there was also a horizontal line, i.e. a corner. If we had searched for "pink" areas and "oval" 

shapes, the chance of identifying faces would not be so bad. 

We now want to build a model for such a CNN that can distinguish the handwritten digits 

zero and one. For this we use a DataSprite for auxiliary operations, an ImageSprite for 

the actual image and - of course - a NeuralNetSprite for the perceptron network at the 

end of the chain. Another, "normal" sprite called Control is supposed to control the oper-

ations. To make the model easier to use, we add some buttons and a pen to make the 

interface clearer. In the screenshot, the image to be analyzed is located at the top of the 

box, the neural network shows its result at the bottom. In between, the different interme-

diate layers are run through and displayed from top to bottom. As an addition, the model 

contains the possibility to draw your own numbers. 

…  

original image 

convolution 

(3 kernel) 

pooling pooling 
convolution 

(3 kernel) 

Perceptron-

netzwork 
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Our CNN is trained with 10 digits of 64x64 pixels each for the zeros and ones. Afterwards 

it should "recognize" these and other handwritten ones. Actually, we would have to train 

several kernels of our CNN especially for this task. Instead, we take only two known kernels 

for the recognition of vertical and horizontal lines, because by limiting the number of ker-

nels to two, everything can be displayed on the screen and the results can even be inter-

preted halfway. (The recognition rate suffers severely from this!) So, we train only the per-

ceptron network with four input values. 
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In the image above, after two stages of reduction, four feature maps of 16x16 pixels each 

are left over, each of which has undergone the Convolution → reLU → Max-Pooling 

operations twice: on the far left with the kernel for vertical lines, then with both kernels in 

different order, and finally twice with the kernel for horizontal lines. The numbers below 

indicate the average brightness value measured over the entire image. If we apply this to 

different digits, the possibility to measure differences between zeros and ones becomes 

apparent despite the very simple procedure. 

Let us look at the functionalities of the individual objects:  

The ImageSprite should import the data of a new cos-

tume as gray values into its data area. This is very simple. 
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Furthermore, the sprite and its clones should be able to 

perform the three operations of a CNN. With some help of 

the DataSprite this is also possible. 

The ImageSprite does not have to master more for our 

purposes. 

 

The Control sprite has to ask the ImageSprite to change 

the costume and analyze it afterwards. In doing so, it 

strictly adheres to the specifications for CNNs. The init 

method only takes care of drawing the lines on stage. The 

other methods work with two layers of CNN, first layer 

and second layer, each containing the versions of the 

characters that appear on stage. So that they do not inter-

fere with each other, copies of the ImageSprite are used, 

not clones. The DataSprite again helps with copying.  

After the required copies have been made, Control asks 

them to perform the relevant CNN operation. Finally, the 

now rather small (4x4 pixel) clones of the last layer are dis-

played as "final feature maps", greatly enlarged. These are 

used to train the neural network. 
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The neural network in the form of a NeuralNetSprite 

should produce the largest output at output 1 when there 

are zeros and at output 4 when there are ones. This is of 

course completely arbitrary. The current output value is 

determined by the function read output. With its compo-

nents the net can be trained, if we succeed in determining 

the mean values from the last layer of second layer. We 

model these aptly with the softmax function. 

 

 

 

And - has the net learned something? 

 

 

 

 

 

 

 

 

 

 

 

Well - there is 

still room for 

improvement! 
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Latest hints 

Machine learning consists to a large extent of preparing data - whether it is tabular data or 

images. The actual learning processes of the machines then consist of the parameter ad-

justments that result from the data. Since both can be visualized well, there is a broad field 

for beginners with many transitions to the area of "computer science and society". 

Examples for the application of the operations of the ML.SpriteLibrary, especially the con-

volution with help of a kernel, can be found abundantly in [DBV].  
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List of examples 

Subject Seite 

False colour representation 12 

Image import from file 12 

Access to local data of another sprite 13 

Access to the data of a clone 14 

Calling a global method by another sprite 15 

Call of a global method with parameters by another sprite 15 

Calling a local method with parameters by another sprite 16 

Access to the code of a local method by another sprite 16 

Importing data from the costume 18 

Data import from CSV file 18 

Data import from SQL query 18 

Data import from JSON file 19 

Importing data with the mouse 19 

Measuring the overall brightness of an image area 20 

Data export to CSV file 20 

Data export to text file 20 

Calculation of correlations (US census income dataset) 23 

Data preparation (New York Citibike tripdata) 25 

Function graphs 27 

Diagram of a point set 28 

Regression line 28 

Mixed data chart 29 

Histogram of an image 29 

Random graphic 32 

Planet Transit 33 

Image reflection 34 

Edge detection 35 

Interpolation polynomial through n points 38 

SQL Queries 41 

Training of a neural network 45 

Traffic sign recognition 46 

Using the World Map Library 53 

Diagram creation (New York Citibike tripdata) 54 

Star Spectra 57 

kNN method in the Hertzsprung-Russel diagram 61 

Character recognition with a convolutional neural network 63 
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